Sách bài tập Toán 8 Bài 4: Phương trình tích
Sách bài tập Toán 8 Bài 4: Phương trình tích
Bài 26 trang 9 sách bài tập Toán 8 Tập 2: Giải các phương trình sau:
a. (4x – 10)(24 + 5x) = 0
b. (3,5 – 7x)(0,1x + 2,3) = 0
Lời giải:
a. (4x – 10)(24 + 5x) = 0 ⇔ 4x – 10 = 0 hoặc 24 + 5x = 0
4x – 10 = 0 ⇔ 4x = 10 ⇔ x = 2,5
24 + 5x = 0 ⇔ 5x = -24 ⇔ x = -4,8
Phương trình có nghiệm x = 2,5 và x = -4,8
b. (3,5 – 7x)(0,1x + 2,3) = 0 ⇔ 3,5 – 7x = 0 hoặc 0,1x + 2,3 = 0
3,5 – 7x = 0 ⇔ 3,5 = 7x ⇔ x = 0,5
0,1x + 2,3 = 0 ⇔ 0,1x = - 2,3 ⇔ x = -23
Phương trình có nghiệm x = 0,5 hoặc x = -23
Bài 27 trang 10 sách bài tập Toán 8 Tập 2: Dùng máy tính bỏ túi để tính giá trị gần đúng các nghiệm của mỗi phương trình sau, làm tròn đến chữ số thập phân thứ ba.
a. (√3 - x√5 )(2x√2 + 1) = 0
b. (2x - √7 )(x√10 + 3) = 0
c. (2 – 3x√5 )(2,5x + √2 ) = 0
d. (√13 + 5x)(3,4 – 4x√1,7 ) = 0
Lời giải:
a. (√3 - x√5 )(2x√2 + 1) = 0 ⇔ √3 - x√5 = 0 hoặc 2x√2 + 1 = 0
√3 - x√5 = 0 ⇔ x = √3/√5 ≈ 0,775
2x√2 + 1 = 0 ⇔ x = - 1/2√2 ≈ - 0,354
Phương trình có nghiệm x = 0,775 hoặc x = - 0,354
b. (2x - √7 )(x√10 + 3) = 0 ⇔ 2x - √7 = 0 hoặc x√10 + 3 = 0
2x - √7 = 0 ⇔ x = √7/2 ≈ 1,323
x√10 + 3 = 0 ⇔ x = - 3/√10 ≈ - 0,949
Phương trình có nghiệm x = 1,323 hoặc x = - 0,949
c. (2 – 3x√5 )(2,5x + √2 ) = 0 ⇔ 2 – 3x√5 = 0 hoặc 2,5x + √2 = 0
2 – 3x√5 = 0 ⇔ x = 2/3√5 ≈ 0,298
2,5x + √2 = 0 ⇔ x = - √2/ (2,5) ≈ - 0,566
Phương trình có nghiệm x = 0,298 hoặc x = - 0,566
d. (√13 + 5x)(3,4 – 4x√1,7 ) = 0
√13 + 5x = 0 hoặc 3,4 – 4x√1,7 = 0
√13 + 5x = 0 ⇔ x = - √13/ 5 ≈ - 0,721
3,4 – 4x√1,7 = 0 ⇔ x = 3,4/(4√1,7 ) ≈ 0,652
Phương trình có nghiệm x = - 0,721 hoặc x = 0,652
Bài 28 trang 10 sách bài tập Toán 8 Tập 2: Giải các phương trình sau:
a. (x – 1)(5x + 3) = (3x – 8)(x – 1)
b. 3x(25x + 15) – 35(5x + 3) = 0
c. (2 – 3x)(x + 11) = (3x – 2)(2 – 5x)
d. (2x2 + 1)(4x – 3) = (2x2 + 1)(x – 12)
e. (2x – 1)2 + (2 – x)(2x – 1) = 0
f. (x + 2)(3 – 4x) = x2 + 4x + 4
Lời giải:
a. (x – 1)(5x + 3) = (3x – 8)(x – 1)
⇔ (x – 1)(5x + 3) – (3x – 8)(x – 1) = 0
⇔ (x – 1)[(5x + 3) – (3x – 8)] = 0
⇔ (x – 1)(5x + 3 – 3x + 8) = 0
⇔ (x – 1)(2x + 11) = 0 ⇔ x – 1 = 0 hoặc 2x + 11 = 0
x – 1 = 0 ⇔ x = 1
2x + 11 = 0 ⇔ x = -5,5
Vậy phương trình có nghiệm x = 1 hoặc x = -5,5
b. 3x(25x + 15) – 35(5x + 3) = 0
⇔ 15x(5x + 3) – 35(5x + 3) = 0
⇔ (15x – 35)(5x + 3) = 0 ⇔ 15x – 35 = 0 hoặc 5x + 3 = 0
15x – 35 = 0 ⇔ x = 35/15 = 7/3
5x + 3 = 0 ⇔ x = - 3/5
Vậy phương trình có nghiệm x = 7/3 hoặc x = -3/5
c. (2 – 3x)(x + 11) = (3x – 2)(2 – 5x)
⇔ (2 – 3x)(x + 11) – (3x – 2)(2 – 5x) = 0
⇔ (2 – 3x)(x + 11) + (2 – 3x)(2 – 5x) = 0
⇔ (2 – 3x)[(x + 11) + (2 – 5x)] = 0
⇔ (2 – 3x)(x + 11 + 2 – 5x) = 0
⇔ (2 – 3x)(13 – 4x) = 0 ⇔ 2 – 3x = 0 hoặc 13 – 4x = 0
2 – 3x = 0 ⇔ x = 2/3
13 – 4x = 0 ⇔ x = 13/4
Vậy phương trình có nghiệm x = 2/3 hoặc x = 13/4
d. (2x2 + 1)(4x – 3) = (2x2 + 1)(x – 12)
⇔ (2x2 + 1)(4x – 3) – (2x2 + 1)(x – 12) = 0
⇔ (2x2 + 1)[(4x – 3) – (x – 12)] = 0
⇔ (2x2 + 1)(4x – 3 – x + 12) = 0
⇔ (2x2 + 1)(3x + 9) = 0 ⇔ 2x2 + 1 = 0 hoặc 3x + 9 = 0
2x2 + 1 = 0: vô nghiệm (vì 2x2 ≥ 0 nên 2x2 + 1 > 0)
3x + 9 = 0 ⇔ x = - 3
Vậy phương trình có nghiệm x = -3
e. (2x – 1)2 + (2 – x)(2x – 1) = 0
⇔ (2x – 1)(2x – 1) + (2 – x)(2x – 1) = 0
⇔ (2x – 1)[(2x – 1) + (2 – x)] = 0
⇔ (2x – 1)(2x – 1 + 2 – x) = 0
⇔ (2x – 1)(x + 1) = 0 ⇔ 2x – 1 = 0 hoặc x + 1 = 0
2x – 1 = 0 ⇔ x = 0,5
x + 1 = 0 ⇔ x = - 1
Vậy phương trình có nghiệm x = 0,5 hoặc x = - 1
f. (x + 2)(3 – 4x) = x2 + 4x + 4
⇔ (x + 2)(3 – 4x) – (x + 2)2 = 0
⇔ (x + 2)(3 – 4x) – (x + 2)(x + 2) = 0
⇔ (x + 2)[(3 – 4x) – (x + 2)] = 0
⇔ (x + 2)(3 – 4x – x – 2) = 0
⇔ (x + 2)(1 – 5x) = 0 ⇔ x + 2 = 0 hoặc 1 – 5x = 0
x + 2 = 0 ⇔ x = - 2
1 – 5x = 0 ⇔ x = 0,2
Vậy phương trình có nghiệm x = - 2 hoặc x = 0,2
Bài 29 trang 10 sách bài tập Toán 8 Tập 2: Giải các phương trình sau:
a. (x – 1)(x2 + 5x – 2) – (x3 – 1) = 0
b. x2 + (x + 2)(11x - 7) = 4
c. x3 + 1 = x(x + 1)
d. x3 + x2 + x + 1 = 0
Lời giải:
a. (x – 1)(x2 + 5x – 2) – (x3 – 1) = 0
⇔ (x – 1)(x2 + 5x – 2) – (x – 1)(x2 + x + 1) = 0
⇔ (x – 1)[(x2 + 5x – 2) – (x2 + x + 1)] = 0
⇔ (x – 1)(x2 + 5x – 2 – x2 – x – 1) = 0
⇔ (x – 1)(4x – 3) = 0 ⇔ x – 1 = 0 hoặc 4x – 3 = 0
x – 1 = 0 ⇔ x = 1
4x – 3 = 0 ⇔ x = 0,75
Vậy phương trình có nghiệm x = 1 hoặc x = 0,75
b. x2 + (x + 2)(11x – 7) = 4
⇔ x2 – 4 + (x + 2)(11x – 7) = 0
⇔ (x + 2)(x – 2) + (x + 2)(11x – 7) = 0
⇔ (x + 2)[(x – 2) + (11x – 7)] = 0
⇔ (x + 2)(x – 2 + 11x – 7) = 0
⇔ (x + 2)(12x – 9) = 0 ⇔ x + 2 = 0 hoặc 12x – 9 = 0
x + 2 = 0 ⇔ x = - 2
12x – 9 = 0 ⇔ x = 0,75
Vậy phương trình có hai nghiệm x = - 2 hoặc x = 0,75
c. x3 + 1 = x(x + 1)
⇔ (x + 1)(x2 – x + 1) = x(x + 1)
⇔ (x + 1)(x2 – x + 1) – x(x + 1) = 0
⇔ (x + 1)(x2 – x + 1 – x) = 0
⇔ (x + 1)(x2 – 2x + 1) = 0
⇔ (x + 1)(x – 1)2 = 0 ⇔ x + 1 = 0 hoặc (x – 1)2 = 0
x + 1 = 0 ⇔ x = - 1
(x – 1)2 = 0 ⇔ x – 1 = 0 ⇔ x = 1
Vậy phương trình có nghiệm x = -1 hoặc x = 1
d. x3 + x2 + x + 1 = 0
⇔ x2(x + 1) + (x + 1) = 0
⇔ (x2 + 1)(x + 1) = 0 ⇔ x2 + 1 = 0 hoặc x + 1 = 0
x2 + 1 = 0: vô nghiệm (vì x2 ≥ 0 nên x2 + 1 > 0)
x + 1 = 0 ⇔ x = - 1
Vậy phương trình có nghiệm x = - 1
Bài 30 trang 10 sách bài tập Toán 8 Tập 2: Giải các phương trình bậc hai sau đây bằng cách đưa về dạng phương trình tích:
a. x2 – 3x + 2 = 0
b. – x2 + 5x – 6 = 0
c. 4x2 – 12x + 5 = 0
d. 2x2 + 5x + 3 = 0
Lời giải:
a. x2 – 3x + 2 = 0 ⇔ x2 – x – 2x + 2 = 0
⇔ x(x – 1) – 2(x – 1) = 0 ⇔ (x – 2)(x – 1) = 0
⇔ x – 2 = 0 hoặc x – 1 = 0
x – 2 = 0 ⇔ x = 2
x – 1 = 0 ⇔ x = 1
Vậy phương trình có nghiệm x= 2 hoặc x = 1
b. – x2 + 5x – 6 = 0 ⇔ - x2 + 2x + 3x – 6 = 0
⇔ - x(x – 2) + 3(x – 2) = 0 ⇔ (x – 2)(3 – x) = 0
⇔ x – 2 = 0 hoặc 3 – x = 0
x – 2 = 0 ⇔ x = 2
3 – x = 0 ⇔ x = 3
Vậy phương trình có nghiệm x = 2 hoặc x = 3.
c. 4x2 – 12x + 5 = 0 ⇔ 4x2 – 2x – 10x + 5 = 0
⇔ 2x(2x – 1) – 5(2x – 1) = 0 ⇔ (2x – 1)(2x – 5) = 0
⇔ 2x – 1 = 0 hoặc 2x – 5 = 0
2x – 1 = 0 ⇔ x = 0,5
2x – 5 = 0 ⇔ x = 2,5
Vậy phương trình có nghiệm x = 0,5 hoặc x = 2,5
d. 2x2 + 5x + 3 = 0 ⇔ 2x2 + 2x + 3x + 3 = 0
⇔ 2x(x + 1) + 3(x + 1) = 0 ⇔ (2x + 3)(x + 1) = 0
⇔ 2x + 3 = 0 hoặc x + 1 = 0
2x + 3 = 0 ⇔ x = -1,5
x + 1 = 0 ⇔ x = -1
Vậy phương trình có nghiệm x = -1,5 hoặc x = -1
Bài 31 trang 10 sách bài tập Toán 8 Tập 2: Giải các phương trình bằng cách đưa về dạng phương trình tích:
a. (x - √2 ) + 3(x2 – 2) = 0
b. x2 – 5 = (2x - √5 )(x + √5 )
Lời giải:
a. (x - √2 ) + 3(x2 – 2) = 0 ⇔ (x - √2 )+ 3(x + √2 )(x - √2 ) = 0
⇔ (x - √2 )[1 + 3(x + √2 )] = 0 ⇔ (x - √2 )(1 + 3x + 3√2 ) = 0
⇔ x - √2 = 0 hoặc 1 + 3x + 3√2 = 0
x - √2 = 0 ⇔ x = √2
1 + 3x + 3√2 = 0 ⇔ x =
Vậy phương trình có nghiệm x = √2 hoặc x =
b. x2 – 5 = (2x - √5 )(x + √5 )
⇔ (x + √5 )(x - √5 ) = (2x - √5 )(x + √5 )
⇔ (x + √5 )(x - √5 ) – (2x - √5 )(x + √5 ) = 0
⇔ (x + √5 )[(x - √5 ) – (2x - √5 )] = 0
⇔ (x + √5 )(- x) = 0 ⇔ x + 5 = 0 hoặc – x = 0
x + √5 = 0 ⇔ x = - √5
x = 0 ⇔ x = 0
Vậy phương trình có nghiệm x = - √5 hoặc x = 0.
Bài 32 trang 10 sách bài tập Toán 8 Tập 2: Cho phương trình (3x + 2k – 5)(x – 3k + 1) = 0, trong đó k là một số.
a. Tìm các giá trị của k sao cho một trong các nghiệm của phương trình là x = 1.
b. Với mỗi giá trị của k tìm được trong câu a, hãy giải phương trình đã cho.
Lời giải:
a. Thay x = 1 vào phương trình (3x + 2k – 5)(x – 3k + 1) = 0, ta có:
(3.1 + 2k – 5)(1 – 3k + 1) = 0
⇔ (2k – 2)(2 – 3k) = 0 ⇔ 2k – 2 = 0 hoặc 2 – 3k = 0
2k – 2 = 0 ⇔ k = 1
2 – 3k = 0 ⇔ k = 2/3
Vậy với k = 1 hoặc k = 2/3 thì phương trình đã cho có nghiệm x = 1
b. Với k = 1, ta có phương trình:
(3x – 3)(x – 2) = 0 ⇔ 3x – 3 = 0 hoặc x – 2 = 0
3x – 3 = 0 ⇔ x = 1
x – 2 = 0 ⇔ x = 2
Vậy phương trình có nghiệm x = 1 hoặc x = 2
Với k = 2/3 , ta có phương trình:
(3x - 11/3 )(x – 1) = 0 ⇔ 3x - 11/3 = 0 hoặc x – 1 = 0
3x - 11/3 = 0 ⇔ x = 11/9
x – 1 = 0 ⇔ x = 1
Vậy phương trình có nghiệm x = 11/9 hoặc x = 1.
Bài 33 trang 11 sách bài tập Toán 8 Tập 2: Biết x = - 2 là một trong các nghiệm của phương trình: x3 + ax2 – 4x – 4 = 0
a. Xác định giá trị của a.
b. Với a tìm được ở câu a, tìm các nghiêm còn lại của phương trình bằng cách đưa phương trình đã cho về dạng phương trình tích.
Lời giải:
a. Thay x = -2 vào phương trình x3 + ax2 – 4x – 4 = 0, ta có:
(-2)3 + a(-2)2 – 4(-2) – 4 = 0
⇒ -8 + 4a + 8 – 4 = 0 ⇒ 4a – 4 = 0 ⇒ a = 1
Vậy a = 1.
b. Với a = 1, ta có phương trình: x3 + x2 – 4x – 4 = 0
⇒ x2(x + 1) – 4(x + 1) = 0 ⇒ (x2 – 4)(x + 1) = 0
⇒ (x + 2)(x – 2)(x + 1) = 0
⇒ x + 2 = 0 hoặc x – 2 = 0 hoặc x + 1 = 0
x + 2 = 0 ⇒ x = -2
x – 2 = 0 ⇒ x = 2
x + 1 = 0 ⇒ x = -1
Vậy phương trình có nghiệm: x = -2 hoặc x = 2 hoặc x = -1.
Bài 34 trang 11 sách bài tập Toán 8 Tập 2: Cho biểu thức hai biến: f(x; y) = (2x – 3y + 7)(3x + 2y – 1)
a. Tìm các giá trị của y sao cho phương trình (ẩn x) f(x;y) = 0, nhận x = -3 làm nghiệm.
b. Tìm các giá trị của x sao cho phương trình (ẩn y) f(x;y) = 0; nhận y = 2 làm nghiệm.
Lời giải:
a. Phương trình f(x;y) = 0 ⇔ (2x – 3y + 7)(3x + 2y – 1) = 0 nhận x = -3 làm nghiệm nên ta có:
[2(-3) – 3y + 7][3(-3) + 2y – 1] = 0
⇔ (- 6 – 3y + 7)(- 9 + 2y – 1) = 0
⇔ (1 – 3y)(2y – 10) = 0 ⇔ 1 – 3y = 0 hoặc 2y – 10 = 0
1 – 3y = 0 ⇔ y = 1/3
2y – 10 = 0 ⇔ y = 5
Vậy phương trình (2x – 3y + 7)(3x + 2y – 1) = 0 nhận x = -3 làm nghiệm thì y = 1/3 hoặc y = 5.
b. Phương trình f(x;y) = 0 ⇔ (2x – 3y + 7)(3x + 2y – 1) = 0 nhận y = 2 làm nghiệm nên ta có:
(2x – 3.2 + 7)(3x + 2.2 – 1) = 0 ⇔ (2x – 6 + 7)(3x + 4 – 1) = 0
⇔ (2x + 1)(3x + 3) = 0 ⇔ 2x + 1 = 0 hoặc 3x + 3 = 0
2x + 1 = 0 ⇔ x = - 1/2
3x + 3 = 0 ⇔ x = - 1
Vậy phương trình (2x – 3y + 7)(3x + 2y – 1) = 0 nhận y = 2 làm nghiệm thì x = - 1/2 hoặc x = - 1.
Xem thêm các bài giải sách bài tập Toán lớp 8 chọn lọc, chi tiết khác:
- Bài 5: Phương trình chứa ẩn ở mẫu
- Bài 6 - 7: Giải bài toán bằng cách lập phương trình
- Ôn tập chương 3
- Bài 1: Liên hệ giữa thứ tự và phép cộng
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sách bài tập Toán 8 hay, chi tiết của chúng tôi được biên soạn bám sát nội dung Sách bài tập Toán 8 Tập 1 & Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều