Giải Toán lớp 12 Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số



Giải Toán lớp 12 Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

Bài giảng: Bài 1: Sự đồng biến, nghịch biến của hàm số - Thầy Trần Thế Mạnh (Giáo viên VietJack)

Với giải bài tập Toán 12 Giải tích Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập về nhà môn Toán lớp 12. Bên cạnh đó là các bài tóm tắt lý thuyết Toán lớp 12 [có kèm video bài giảng] và bộ bài tập trắc nghiệm theo bài học cùng với trên 50 dạng bài tập Toán lớp 12 với đầy đủ phương pháp giải giúp bạn ôn luyện để đạt điểm cao trong các bài thi môn Toán lớp 12.

Tài liệu lý thuyết và các dạng bài tập Toán lớp 12 Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số:




Giải bài tập Toán lớp 12 Bài 1: Sự đồng biến, nghịch biến của hàm số

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 4: Từ đồ thị (H.1, H.2) hãy chỉ ra các khoảng tăng, giảm của hàm số y = cosx trên đoạn [(-π)/2; 3π/2] và các hàm số y = |x| trên khoảng (-∞; +∞).

Giải bài tập Toán 12 | Giải Toán lớp 12

Lời giải:

- Hàm số y = cosx trên đoạn [(-π)/2; 3π/2]:

Các khoảng tăng: [(-π)/2,0], [π, 3π/2].

Các khoảng giảm: [0, π ],.

- Hàm số y = |x| trên khoảng (-∞; +∞)

Khoảng tăng: [0, +∞)

Khoảng giảm (-∞, 0].

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 5: Xét các hàm số sau và đồ thị của chúng:

a) y = -x2/2 (H.4a)       b) y = 1/x (H.4b)

Giải bài tập Toán 12 | Giải Toán lớp 12

Xét dấu đạo hàm của mỗi hàm số và điền vào bảng tương ứng.

Lời giải:

Giải bài tập Toán 12 | Giải Toán lớp 12

Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 7: Khẳng định ngược lại với định lí trên có đúng không ? Nói cách khác, nếu hàm số đồng biến (nghịch biến) trên K thì đạo hàm của nó có nhất thiết phải dương (âm) trên đó hay không ?

Lời giải:

Xét hàm số y = x3 có đạo hàm y’ = 3x2 ≥ 0 với mọi số thực x và hàm số đồng biến trên toàn bộ R. Vậy khẳng định ngược lại với định lý trên chưa chắc đúng hay nếu hàm số đồng biến (nghịch biến) trên K thì đạo hàm của nó không nhất thiết phải dương (âm) trên đó.

Bài 1 (trang 9 SGK Giải tích 12): Xét sự đồng biến, nghịch biến của hàm số:

a) y = 4 + 3x – x2

b) Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

c) y = x4 - 2x2 + 3

d) y = -x3 + x2 – 5

Lời giải:

a) Tập xác định : D = R

y' = 3 – 2x

y’ = 0 ⇔ 3 – 2x = 0 ⇔ x = Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Ta có bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đồng biến trong khoảng (-∞; 3/2) và nghịch biến trong khoảng (3/2 ; + ∞).

b) Tập xác định : D = R

y' = x2 + 6x - 7

y' = 0 ⇔ x = -7 hoặc x = 1

Ta có bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đồng biến trong các khoảng (-∞ ; -7) và (1 ; +∞); nghịch biến trong khoảng (-7; 1).

c) Tập xác định: D = R

y'= 4x3 – 4x.

y' = 0 ⇔ 4x3 – 4x = 0 ⇔ 4x.(x – 1)(x + 1) = 0 ⇔ Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số nghịch biến trong các khoảng (-∞ ; -1) và (0 ; 1); đồng biến trong các khoảng (-1 ; 0) và (1; +∞).

d) Tập xác định: D = R

y'= -3x2 + 2x

y' = 0 ⇔ -3x2 + 2x = 0 ⇔ x.(-3x + 2) = 0 ⇔ Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên:

Giải bài 1 trang 9 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số nghịch biến trong các khoảng (-∞ ; 0) và (2/3 ; + ∞), đồng biến trong khoảng (0 ; 2/3).

....................................

....................................

....................................

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Giải bài tập lớp 12 sách mới các môn học