Cho hình chóp S.ABC có SA ⊥ (ABC), AB ⊥ BC, SA = AB = 3a, BC = 4a
Giải sách bài tập Toán 11 Bài 5: Khoảng cách
Bài 47 trang 110 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC), AB ⊥ BC, SA = AB = 3a, BC = 4a. Tính khoảng cách:
a) Từ điểm C đến mặt phẳng (SAB);
b) Giữa hai đường thẳng SA và BC;
c) Từ điểm A đến mặt phẳng (SBC);
d) Từ điểm B đến mặt phẳng (SAC);
e*) Giữa hai đường thẳng AB và SC.
Lời giải:
a) Do SA ⊥ (ABC), BC ⊂ (ABC) nên SA ⊥ BC.
Ta có: BC ⊥ SA, BC ⊥ AB và SA ∩ AB = A trong (SAB)
Suy ra BC ⊥ (SAB).
Như vậy: d(C, (SAB)) = BC = 4a.
b) Do SA ⊥ (ABC), AB ⊂ (ABC) nên SA ⊥ AB.
Mặt khác AB ⊥ BC.
Suy ra AB là đoạn vuông góc chung của hai đường thẳng SA và BC.
Như vậy: d(SA, BC) = AB = 3a.
c) Gọi H là hình chiếu của điểm A trên SB hay AH ⊥ SB.
Do BC ⊥ (SAB), AH ⊂ (SAB) nên BC ⊥ AH.
Ta có: AH ⊥ BC, AH ⊥ SB và BC ∩ SB = B trong (SBC)
Suy ra AH ⊥ (SBC).
Như vậy: d(A, (SBC)) = AH.
Áp dụng hệ thức lượng trong tam giác SAB vuông tại A (SA ⊥ AB), đường cao AH ta có:
Vậy
d) Gọi I là hình chiếu của B trên AC hay BI ⊥ AC.
Do SA ⊥ (ABC), BI ⊂ (ABC) nên SA ⊥ BI.
Ta có: BI ⊥ AC, BI ⊥ SA, AC ∩ SA = A trong (SAC)
Suy ra BI ⊥ (SAC).
Như vậy: d(B, (SAC)) = BI.
Áp dụng hệ thức lượng trong tam giác ABC vuông tại B (AB ⊥ BC), đường cao BI ta có:
Vậy
e*) · Lấy D ∈ (ABC) sao cho ABCD là hình bình hành.
Mà (do AB ⊥ BC) nên ABCD là hình chữ nhật.
Suy ra CD ⊥ AD.
Do SA ⊥ (ABC), CD ⊂ (ABC) nên SA ⊥ CD.
Ta có: CD ⊥ AD, CD ⊥ SA, AD ∩ SA = A trong (SAD)
Suy ra CD ⊥ (SAD).
· Gọi K là hình chiếu của A trên SD hay AK ⊥ SD.
Do CD ⊥ (SAD), AK ⊂ (SAD) nên CD ⊥ AK.
Ta có: AK ⊥ SD, AK ⊥ CD, SD ⋂ CD = D trong (SCD)
Suy ra AK ⊥ (SCD).
Ta có: AB // CD (vì ABCD là hình chữ nhật) và CD ⊂ (SCD).
Suy ra AB // (SCD).
Như vậy: d(AB, SC) = d(AB, (SCD)) = d(A, (SCD)) = AK.
Ta có: SA ⊥ (ABC), AD ⊂ (ABC) nên SA ⊥ AD hay
Do ABCD là hình chữ nhật nên AD = BC = 4a.
Áp dụng hệ thức lượng trong tam giác SAD vuông tại A đường cao AK ta có:
Vậy
Lời giải SBT Toán 11 Bài 5: Khoảng cách hay khác:
Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác:
SBT Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
SBT Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Cánh diều
- Giải Chuyên đề học tập Toán 11 Cánh diều
- Giải SBT Toán 11 Cánh diều
- Giải lớp 11 Cánh diều (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
Săn SALE shopee Tết:
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều