Cho hình hộp ABCD.A’B’C’D’ có ABCD là hình thoi cạnh a, AA’ ⊥ (ABCD), AA’ = 2a, AC = a
Giải sách bài tập Toán 11 Bài 5: Khoảng cách
Bài 50 trang 110 SBT Toán 11 Tập 2: Cho hình hộp ABCD.A’B’C’D’ có ABCD là hình thoi cạnh a, AA’ ⊥ (ABCD), AA’ = 2a, AC = a. Tính khoảng cách:
a) Từ điểm A đến mặt phẳng (BCC’B’);
b) Giữa hai mặt phẳng (ABB’A’) và (CDD’C’);
c*) Giữa hai đường thẳng BD và A’C.
Lời giải:
a) Gọi H là hình chiếu của A trên BC hay AH ⊥ BC.
Do ABCD.A’B’C’D là hình hộp nên AA’ // BB’.
Mà AA’ ⊥ (ABCD) nên BB’ ⊥ (ABCD).
Hơn nữa AH ⊂ (ABCD).
Từ đó ta có BB’ ⊥ AH.
Ta có: AH ⊥ BC, AH ⊥ BB’, BC ∩ BB’ = B trong (BCC’B’)
Suy ra AH ⊥ (BCC’B’).
Như vậy d(A, (BCC’B’)) = AH.
Xét tam giác ABC đều (do AB = BC = AC = a), AH là đường cao (do AH ⊥ BC)
Suy ra AH là đường trung tuyến nên ta có
Áp dụng định lí Pythagore trong tam giác ABH vuông tại H có:
AB2 = AH2 + BH2
Suy ra
Vậy
b) Do ABCD.A’B’C’D là hình hộp nên (ABB’A’) // (CDD’C’).
Như vậy: d((ABB’A’), (CDD’C’)) = d(A, (CDD’C’)).
Gọi I là hình chiếu của A trên CD hay AI ⊥ CD.
Do ABCD.A’B’C’D là hình hộp nên AA’ // DD’.
Mà AA’ ⊥ (ABCD) nên DD’ ⊥ (ABCD).
Hơn nữa AI ⊂ (ABCD).
Từ đó ta có DD’ ⊥ AI.
Ta có: AI ⊥ CD, AI ⊥ DD’, CD ∩ DD’ = D trong (CDD’C’)
Suy ra AI ⊥ (CDD’C’).
Khi đó: d(A, (CDD’C’)) = AI.
Xét tam giác ACD đều (do AC = AD = DC = a), AI là đường cao (do AI ⊥ CD)
Suy ra AI là đường trung tuyến nên ta có
Áp dụng định lí Pythagore trong tam giác ADI vuông tại I có:
AD2 = AI2 + DI2
Suy ra
Vậy
c) Gọi O là giao điểm của AC và BD.
Ta có ABCD là hình thoi nên AC ⊥ BD và
Do AA’ ⊥ (ABCD) và BD ⊂ (ABCD) nên AA’ ⊥ BD.
Ta có: BD ⊥ AA’, BD ⊥ AC, AA’ ∩ AC = A trong (AA’C)
Suy ra BD ⊥ (AA’C).
Gọi E là hình chiếu của O trên A’C hay OE ⊥ A’C.
Lại có: BD ⊥ (AA’C), OE ⊂ (AA’C).
Suy ra BD ⊥ OE.
Mà OE ⊥ A’C.
Từ đó ta có OE là đoạn vuông góc chung của hai đường thẳng BD và A’C.
Như vậy: d(BD, A’C) = OE.
Do AA’ ⊥ (ABCD) và AC ⊂ (ABCD) nên AA’ ⊥ AC.
Áp dụng định lí Pythagore trong tam giác A’AC vuông tại A ta có:
A'C2 = A'A2 + AC2
Suy ra
Xét tam giác CEO và tam giác CAA’ có:
chung
Suy ra
Vậy
Lời giải SBT Toán 11 Bài 5: Khoảng cách hay khác:
Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác:
SBT Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
SBT Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Cánh diều
- Giải Chuyên đề học tập Toán 11 Cánh diều
- Giải SBT Toán 11 Cánh diều
- Giải lớp 11 Cánh diều (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
Săn SALE shopee Tết:
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều