Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a

Giải sách bài tập Toán 11 Bài 25: Hai mặt phẳng vuông góc - Kết nối tri thức

Bài 7.22 trang 34 SBT Toán 11 Tập 2: Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a. Tính côsin góc giữa hai mặt phẳng sau:

a) Mặt phẳng (SAB) và mặt phẳng (ABCD);

b) Mặt phẳng (SAB) và mặt phẳng (SBC).

Quảng cáo

Lời giải:

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a

a) Gọi O là giao điểm của AC và BD nên O là trung điểm của AC, BD.

Xét tam giác SAC có SA = SC nên tam giác SAC cân tại S mà SO là trung tuyến nên SO là đường cao hay SO AC.

Xét tam giác SBD có SD = SB nên tam giác SBD cân tại S mà SO là trung tuyến nên SO là đường cao hay SO BD.

Do đó SO (ABCD) nên SO AB.

Kẻ OH AB tại H mà SO AB. Khi đó AB (SOH). Suy ra AB SH.

Do đó góc giữa hai mặt phẳng (SAB) và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng SH và HO mà (SH,HO)=SHO^.

Xét tam giác ABC có OH là đường trung bình nên OH = BC2=a2 .

Xét tam giác SAH vuông tại H, có AH = AB2=a2; SA = a.

Khi đó SH = SA2-AH2=a2-a22=a32 .

Xét tam giác SHO vuông tại O, có cosSHO^=OHSH=33.

Vậy côsin góc giữa hai mặt phẳng (SAB) và (ABCD) là 33 .

b) Gọi K là trung điểm của SB.

Xét tam giác SAB đều có AK là trung tuyến nên AK đồng thời là đường cao.

Suy ra AK SB.

Xét tam giác SCB đều có CK là trung tuyến nên CK đồng thời là đường cao.

Suy ra CK SB.

Do đó góc giữa hai mặt phẳng (SAB) và mặt phẳng (SBC) bằng góc giữa hai đường thẳng AK và CK.

Ta có AK, CK là đường cao của các tam giác đều cạnh a nên AK = CK = a32 .

Xét tam giác ABC vuông tại B, có AC2 = AB2 + BC2 = a2 + a2 = 2a2 ⇒ AC = a2.

Áp dụng định lí côsin trong tam giác ACK, ta có:

cosAKC^=AK2+CK2-AC22.AK.CK=-13, suy ra cos(AK,CK) = -cosAKC^ = 13.

Vậy côsin góc giữa hai mặt phẳng (SAB) và mặt phẳng (SBC) bằng 13 .

Quảng cáo

Lời giải SBT Toán 11 Bài 25: Hai mặt phẳng vuông góc hay khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

Săn SALE shopee Tết:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Kết nối tri thức khác
Tài liệu giáo viên