Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D
Giải SBT Toán 12 Chân trời sáng tạo Bài tập cuối chương 5
Bài 11 trang 65 SBT Toán 12 Tập 2: Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D.
Cho biết phương trình bề mặt của lều là (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9, phương trình mặt phẳng chứa cửa lều là (P): x = 2, phương trình chứa sàn lêu là (Q): z = 0. Tìm tâm và bán kính đường tròn cửa lều và đường tròn sàn lều.
Lời giải:
Bề mặt của lều (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9 có tâm I(3; 3; 1), bán kính R = 3.
Gọi d là đường thẳng đi qua I và vuông góc với (P): x = 2.
Ta có vectơ chỉ phương của d là
Suy ra d có phương trình tham số
Gọi A(3 + t; 3; 1) là hình chiếu vuông góc của I trên (P). Thay tọa độ điểm A vào phương trình (P): x = 2, ta được (3 + t) – 2 = 0 hay t = −1, suy ra A(2; 3; 1).
Bán kính r1 của đường tròn có cửa lều là:
r1 =
Vậy đường tròn cửa lều có tâm A(2; 3; 1), bán kính r1 =
Gọi d' là đường thẳng đi qua I và vuông góc với (Q): z = 0.
Ta có vectơ chỉ phương của d' là = (0; 0; 1)
Suy ra d' có phương trình tham số:
Gọi B(3; 3; 1 + t) là hình chiếu vuông góc của I trên (Q). Thay tọa độ của điểm B vào phương trình (Q): z = 0 ta được 1 + t = 0, suy ra t = −1, suy ra B(3; 3; 0).
Bán kính r1 của đường tròn sàn lều là: r2 =
Vậy đường tròn sàn lều có tâm B(3; 3; 0), bán kính r2 =
Lời giải SBT Toán 12 Bài tập cuối chương 5 hay khác:
Bài 15 trang 64 SBT Toán 12 Tập 2: Cho hai điểm A(2; 1; −2), B(−2; −2; −9) và đường thẳng d: ....
Bài 16 trang 64 SBT Toán 12 Tập 2: Cho hai đường thẳng d: và d': . ....
Bài 6 trang 65 SBT Toán 12 Tập 2: Cho hai đường thẳng d1: và đường thẳng d2: . ....
Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
SBT Toán 12 Bài 2: Phương trình đường thẳng trong không gian
SBT Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST