Xét tính đơn điệu và tìm cực trị của các hàm số: y = −x^3 – 3x^2 + 24x – 1
Giải SBT Toán 12 Chân trời sáng tạo Bài 1: Tính đơn diệu và cực trị của hàm số
Bài 2 trang 10 SBT Toán 12 Tập 1: Xét tính đơn điệu và tìm cực trị của các hàm số:
a) y = −x3 – 3x2 + 24x – 1;
b) y = x3 – 8x2 + 5x + 2;
c) y = x3 + 2x2 + 3x + 1;
d) y = −3x3 + 3x2 – x + 2.
Lời giải:
a) y = −x3 – 3x2 + 24x – 1
Tập xác định: D = ℝ.
Ta có: y' = −3x2 – 6x + 24 ⇔ y' = 0 ⇔ x = 2 hoặc x = −4.
Ta có bảng biến thiên như sau:
Hàm số đồng biến trên khoảng (−4; 2).
Hàm số nghịch biến trên các khoảng (−∞; −4) và (2; +∞).
Hàm số đạt cực đại tại x = 2, yCĐ = 27.
Hàm số đạt cực tiểu tại x = −4, yCT = −81.
b) y = x3 – 8x2 + 5x + 2
Tập xác định: D = ℝ.
Ta có: y' = 3x2 – 16x + 5 ⇔ y' = 0 ⇔ x = 5 hoặc x = .
Ta có bảng biến thiên:
Hàm số đồng biến trên các khoảng và (5; +∞).
Hàm số nghịch biến trên khoảng .
Hàm số đạt cực đại tại x = , yCĐ = .
Hàm số đạt cực tiểu tại x = 5, yCT = −48.
c) y = x3 + 2x2 + 3x + 1
Tập xác định: D = ℝ.
Ta có: y' = 3x2 + 4x + 3 = > 0, với mọi x.
Do đó hàm số đồng biến trên (−∞; +∞).
Hàm số không có cực trị.
d) y = −3x3 + 3x2 – x + 2.
Tập xác định: D = ℝ.
Ta có: y' = −9x2 + 6x – 1 = −(3x – 1)2 ≤ 0, với mọi x.
Do đó, hàm số nghịch biến trên (−∞; +∞).
Hàm số không có cực trị.
Lời giải SBT Toán 12 Bài 1: Tính đơn diệu và cực trị của hàm số hay khác:
Bài 3 trang 10 SBT Toán 12 Tập 1: Xét tính đơn điệu và tìm cực trị của các hàm số: a) ....
Bài 4 trang 10 SBT Toán 12 Tập 1: Xét tính đơn điệu và tìm cực trị của các hàm số:a)....
Bài 5 trang 10 SBT Toán 12 Tập 1: Tìm m để a) Hàm số đồng biến trên từng khoảng xác định.....
Bài 7 trang 11 SBT Toán 12 Tập 1: Chứng minh rằng: a) tanx ≥ x với mọi x ∈ ....
Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
SBT Toán 12 Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số
SBT Toán 12 Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST