Cho hàm số y trang 36 SBT Toán 12 Tập 1
Giải sách bài tập Toán 12 Bài tập cuối chương 1 - Kết nối tri thức
Bài 1.63 trang 36 SBT Toán 12 Tập 1: Cho hàm số y = x3 + (m – 1)x2 + (2m – 3)x + .
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.
b) Tìm m để hàm số có hai điểm cực trị x1 và x2 thỏa mãn
c) Tìm m để hàm số đồng biến trên ℝ.
d) Tìm m để hàm số đồng biến trên khoảng (1; +∞).
Lời giải:
a) Khi m = 2, ta có: y = x3 + x2 + x + .
y' = x2 + 2x + 1 = (x + 1)2 ≥ 0 với mọi x.
Hàm số luôn đồng biến trên ℝ.
Hàm số không có cực trị.
Bảng biến thiên của hàm số như sau:
Ta có:
Đồ thị hàm số nhận điểm I làm tâm đối xứng. Đồ thị hàm số có hình vẽ như sau:
b) Ta có: y = x3 + (m – 1)x2 + (2m – 3)x +
y' = x2 + 2(m – 1)x + 2m – 3
y' = x2 + 2mx – 2x + 2m – 3
y' = (x2 – 2x – 3) + (2mx + 2m)
y' = (x + 1)(x – 3) + 2m(x + 1).
y' = (x + 1) (x – 3 + 2m)
y' = 0 khi x = −1 hay x = 3 – 2m
Để hàm số có hai nghiệm phân biệt thì x1 ≠ x2 hay 3 – 2m ≠ −1 hay m ≠ 2.
Ta có:
(−1)2 + (3 – 2m)2 = 5
(3 – 2m)2 = 4
Suy ra 3 – 2m = 2 hoặc 3 – 2m = −2
⇒ m = hoặc m = .
Vậy m ∈ .
c) Ta có: y' = x2 + 2(m – 1)x + 2m – 3
Để hàm số đồng biến trên ℝ
⇔
⇔
m2 – 2m + 1 – 2m + 3 ≤ 0
m2 – 4m + 4 ≤ 0
(m – 2)2 ≤ 0
⇒ m = 2.
d) Ta có: y' = x2 + 2(m – 1)x + 2m – 3
y' = 0 ⇔
Trường hợp 1: −1 ≤ 3 – 2m ⇔ m ≤ 2. Ta có bảng biến thiên như sau:
Để hàm số đồng biến trên (1; +∞) thì 3 – 2m ≤ 1 ⇔ m ≥ 1.
Vậy kết hợp điều kiện ta được 1 ≤ m ≤ 2.
Trường hợp 2: 3 – 2m < −1 ⇔ m > 2. Có bảng biến thiên như sau:
Trường hợp này hàm số đồng biến trên (−1; +∞) nên hiển nhiên đồng biến trên (1; +∞).
Vậy trường hợp này m > 2.
Vậy hàm số đồng biến trên khoảng (1; +∞) khi và chỉ khi m ≥ 1.
Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 1 hay khác:
Bài 1.52 trang 33 SBT Toán 12 Tập 1: Hàm số nào dưới đây nghịch biến trên tập xác định của nó? ....
Bài 1.55 trang 34 SBT Toán 12 Tập 1: Cho hàm số . Hàm số đạt cực đại tại x = 2 khi ....
Bài 1.56 trang 34 SBT Toán 12 Tập 1: Cho hàm số có đồ thị (C). Xét các mệnh đề sau: ....
Bài 1.58 trang 34 SBT Toán 12 Tập 1: Cho hàm số . Mệnh đề nào sau đây là đúng? ....
Bài 1.61 trang 35 SBT Toán 12 Tập 1: Cho hàm số y = có đồ thị như hình vẽ sau: ....
Bài 1.65 trang 36 SBT Toán 12 Tập 1: Cho hàm số . a) Tìm m để tiệm cận ngang của ....
Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT