Cho hàm số y trang 36 SBT Toán 12 Tập 1

Giải sách bài tập Toán 12 Bài tập cuối chương 1 - Kết nối tri thức

Bài 1.65 trang 36 SBT Toán 12 Tập 1: Cho hàm số y=m+1x2m+1x1 .

a) Tìm m để tiệm cận ngang của đồ thị hàm số đi qua điểm (1; 2).

b) Khảo sát và vẽ đồ thị (H) của hàm số y = f(x) với m tìm được ở câu a.

c) Từ đồ thị (H) của hàm số y = f(x) ở câu b, vẽ đồ thị của hàm số y = f(x) .

Quảng cáo

Lời giải:

a) Ta có: limx+y=limx+m+1x2m+1x1=m+1 ;

              limxy=limxym+1x2m+1x1=m+1 .

Vậy tiệm cận ngang là đường thẳng y = m + 1.

Để tiệm cận ngang của đồ thị hàm số đi qua điểm (1; 2) thì m + 1 = 2 hay m = 1.

Vậy m = 1.

b) Với m = 1, hàm số trở thành y=2x1x1 .

Tập xác định: D = ℝ\{1}.

Ta có: 1x12  < 0, với mọi x ≠ 1.

Suy ra hàm số nghịch biến trên các khoảng (−∞; 1) và (1; +∞).

Ta có: limx+y=limx+2x1x1=2 ,

           limxy=limx2x1x1=2.

Do đó, đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.

                 limx1+y=limx1+2x1x1=+ ,

                 limx1y=limx12x1x1= .

Do đó, đồ thị nhận đường thẳng x = 1 làm tiệm cận đứng.

Bảng biến thiên của hàm số được cho như sau:

Cho hàm số y trang 36 SBT Toán 12 Tập 1

Đồ thị hàm số như sau:

Cho hàm số y trang 36 SBT Toán 12 Tập 1

c) Ta có:

y=f(x)=f(x) khi f(x)  0f(x) khi f(x) < 0.

Như vậy, để vẽ đồ thị hàm số y = f(x)  ta làm như sau: Giữ nguyên phần đồ thị hàm số y = f(x) ở phía trên trục Ox; lấy đối xứng qua trục Ox phần đồ thị hàm số y = f(x) ở phía trên trục Ox. Đồ thị y = f(x)  là đường liền nét trong hình vẽ dưới đây:

Cho hàm số y trang 36 SBT Toán 12 Tập 1

Quảng cáo

Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 1 hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên