Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA

Giải sách bài tập Toán 12 Bài 6: Vectơ trong không gian - Kết nối tri thức

Bài 2.13 trang 46 SBT Toán 12 Tập 1: Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi G là giao điểm của MP và NQ. Chứng minh rằng GA+GB+GC+GD=0.

Quảng cáo

Lời giải:

Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA

Vì MN là đường trung bình của tam giác ABC nên MN // AC và MN = 12AC.

Vì PQ là đường trung bình của tam giác ADC nên NP // AC và NP = 12AC.

Do dó, MN //AC và MNPQ là hình bình hành.

Theo đề bài, G là giao điểm của MNPQ là hình bình hành và G là giao điểm MP và NQ nên G là trung điểm của mỗi đoạn thẳng đó.

Ta có: GA+GB+GC+GD = 2GM+2GP = 2GM+GP = 2.0 = 0.

Quảng cáo

Lời giải Sách bài tập Toán lớp 12 Bài 6: Vectơ trong không gian hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên