Cho tam giác ABC cân tại A có hai trung tuyến BM và CN cắt nhau tại G

Giải sách bài tập Toán lớp 7 Bài 10: Tính chất ba đường trung tuyến của tam giác

Bài 70 trang 89 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A có hai trung tuyến BM và CN cắt nhau tại G. Chứng minh:

a) BM = CN;

b) Tam giác GBC là tam giác cân;

c) AG vuông góc với BC.

Quảng cáo

Lời giải:

Cho tam giác ABC cân tại A có hai trung tuyến BM và CN cắt nhau tại G

a) Vì tam giác ABC cân tại A nên AB = AC, ABC^=ACB^.

Vì BM, CN là đường trung tuyến của tam giác ABC nên M, N lần lượt là trung điểm của AC và AB.

Do đó AM = MC, AN = NB.

Mà AB = AC

Suy ra AM = MC = AN = NB.

Xét ∆ABM và ∆ACN có:

AB = AC (chứng minh trên),

BAC^ là góc chung,

AM = AN (chứng minh trên)

Do đó ∆ABM = ∆ACN (c.g.c).

Suy ra BM = CN (hai cạnh tương ứng).

Vậy BM = CN.

b) Do ∆AMB = ∆ANC (câu a) suy ra ABM^=ACN^ (hai góc tương ứng).

Ta có ABC^=ABM^+MBC^, ACB^=ACN^+NCB^.

ABC^=ACB^ABM^=ACN^.

Nên MBC^=NCB^ hay GBC^=GCB^

Suy ra tam giác GBC cân tại G.

Vậy tam giác GBC cân tại G

c) Ta có AB = AC nên A nằm trên đường trung trực của đoạn thẳng BC.

Theo câu b tam giác GBC cân tại G nên GB = GC (hai cạnh bên).

Do đó G nằm trên trung trực của đoạn thẳng BC.

Suy ra AG là đường trung trực của đoạn thẳng BC nên AG vuông góc với BC tại trung điểm của BC.

Vậy AG vuông góc với BC.

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Cánh diều (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Cánh diều khác
Tài liệu giáo viên