Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49)

Giải SBT Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Bài 4.44 trang 69 sách bài tập Toán lớp 7 Tập 1: Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:

a) ∆ABD vuông tại B.

b) ∆ABD = ∆BAC.

c) Các tam giác AMB, AMC là các tam giác cân tại đỉnh M.

Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49)

Quảng cáo

Lời giải:

a) Xét tam giác AMC và tam giác DMB có:

MA = MD (gt)

MB = MC (M là trung điểm của BC)

AMC^=DMB^ (hai góc đối đỉnh)

Do đó, ∆AMC = ∆DMB (c – g – c).

Suy ra DBM^=ACM^ (hai góc tương ứng).

Do tam giác ABC vuông tại A nên ABC^+ACM^=ABC^+ACB^=90°.

Khi đó, ta có: ABD^=ABC^+CBD^=ABC^+DBM^=ABC^+ACM^=90°.

Suy ra ABD^=90°.

Vậy tam giác ABD vuông tại B.

b) Xét tam giác vuông ABD và tam giác vuông BAC có:

BD = AC (do ∆AMC = ∆DMB)

AB: cạnh chung

Do đó, ∆ABD = ∆BAC (hai cạnh góc vuông).

c) Do tam giác ABC vuông tại A nên AC AB tại A.

Tam giác ABD vuông tại B nên DB AB tại B.

Suy ra AC // DB (do cùng vuông góc với AB).

BDA^=CAD^ (hai góc so le trong).

Lại có: ACB^=BDA^ (do ∆ABD = ∆BAC).

Do đó, CAD^=ACB^, hay CAM^=ACM^.

Suy ra tam giác AMC cân tại đỉnh M.

Khi đó MA = MC.

Mà MB = MC (do M là trung điểm của BC).

Nên MA = MB = MC.

Do đó, tam giác AMB cân tại đỉnh M.

Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác
Tài liệu giáo viên