Giải SBT Toán 7 trang 70 Tập 2 Kết nối tri thức
Với Giải SBT Toán 7 trang 70 Tập 2 trong Bài tập ôn tập cuối năm Sách bài tập Toán lớp 7 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 70.
Giải SBT Toán 7 trang 70 Tập 2 Kết nối tri thức
Bài 9 trang 70 sách bài tập Toán lớp 7 Tập 2:
Cho đa thức F(x) = x4 − x3 − 6x2 + 15x − 9.
a) Kiểm tra lại rằng x = 1 và x = −3 là hai nghiệm của F(x).
b) Tìm đa thức G(x) sao cho F(x) = (x − 1)(x + 3) . G(x)
Lời giải:
a)Ta có : F(1) = 14 − 13 – 6 . 12 + 15 . 1 − 9
= 1 − 1 − 6 + 15 − 9 = 0.
F(−3) = (−3)4 − (−3)3 – 6 . (−3)2 + 15 . (−3) − 9
= 81 + 27 − 6.9 + 15. (−3) − 9
= 81 + 27 − 54 − 45 − 9 = 0.
Vậy x = 1 và x = −3 là hai nghiệm của F(x).
b) Ta có G(x) = F(x) : [(x − 1)(x + 3)]
= F(x) : [ x(x +3) – 1 . (x + 3)]
= F(x) : (x2 + 3x − x − 3)
= F(x) : (x2 +2x − 3)
Ta đặt tính chia :
Vậy G(x) = x2 − 3x + 3.
Bài 10 trang 70 sách bài tập Toán lớp 7 Tập 2: Tính góc Mby trong Hình 1, biết rằng Ax // By.
HD. Kẻ thêm đường thẳng đi qua M và song song với Ax.
Lời giải:
Kẻ đường thẳng z đi qua M và song song với Ax.
Vì Mz // Ax nên ta có: (hai góc so le trong).
Ta có: Ax // By (gt); Ax // Mz (cách vẽ).
Suy ra By // Mz.
Ta có
Suy ra
Mà (By // Mz, hai góc so le trong).
Do đó .
Bài 11 trang 70 sách bài tập Toán lớp 7 Tập 2: Cho năm điểm A, B, C, D, E cùng nằm trên một đường thẳng d sao cho AB = DE, BC = CD. Điểm M không thuộc d sao cho MC vuông góc với d. Chứng minh rằng:
a) ΔMBC = ΔMDC và ΔMAC = ΔMEC.
b) ΔMAB = ΔMED.
Lời giải:
a) Xét ΔMBC và ΔMDC cùng vuông tại C có :
BC = CD (gt);
MC là cạnh chung.
Do đó ΔMBC = ΔMDC (hai cạnh góc vuông).
Ta có: CA = BC + AB
CE = CD + DE
Mà AB = DE (gt); BC = CD (gt)
Do đó CA = CE
Xét ΔMAC và ΔMEC cùng vuông tại C có :
CA = CE (cmt);
MC là cạnh chung.
Do đó ΔMAC = ΔMEC (hai cạnh góc vuông).
b) Xét ΔMAB và ΔMED có :
AB = ED ( gt);
MA = ME (ΔMAC = ΔMEC, hai cạnh tương ứng);
(ΔMAC = ΔMEC, hai góc tương ứng).
Do đó ΔMAB = ΔMED (c.g.c).
Bài 12 trang 70 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC vuông tại đỉnh A; ba điểm M, N, P lần lượt nằm trên các cạnh BC, CA, AB của tam giác ABC sao cho M là trung điểm của BC, MN vuông góc với AC và MP vuông góc với AB. Chứng minh rằng:
a) ΔMNC = ΔBPM.
b) .
Lời giải:
a) Ta có :
MP ⊥ AB (gt);
AC ⊥ AB (ΔABC vuông tại A).
Suy ra MP // AC
Do đó (hai góc đồng vị).
Xét ΔBPM vuông tại P và ΔMNC vuông tại N có :
BM = MC( M là trung điểm của BC);
(cmt).
Do đó ΔBPM = ΔMNC ( cạnh huyền – góc nhọn).
b) Ta có :
(ΔBPM = Δ MNC, hai góc tương ứng);
(ΔBMP vuông tại P).
Suy ra .
Mà .
Do đó .
Bài 13 trang 70 sách bài tập Toán lớp 7 Tập 2: Cho bốn điểm A, B, C và D như Hình 2. Biết rằng , và AB = DC. Chứng minh rằng:
a) Tam giác BEC cân tại đỉnh E.
b) EA = ED.
Lời giải:
a) Ta có :
(hai góc kề bù)
Suy ra
Xét ΔEBC có:
Suy ra
Hay
Do đó .
Vậy tam giác BEC cân tại đỉnh E.
b) Ta có: .
Xét ΔEBA và ΔECD có:
(cmt);
AB = CD (gt);
EB = EC (ΔEBC cân tại E).
Do đó ΔEBA = ΔECD (c.g.c).
Suy ra EA = ED (hai cạnh tương ứng).
Bài 14 trang 70 sách bài tập Toán lớp 7 Tập 2: Tròn đưa cho Vuông một tờ giấy, trên đó có vẽ điểm C và hai đường thẳng a và b không đi qua C, cho biết hai đường thẳng a và b không song song với nhau (giao điểm của a và b nằm ngoài tờ giấy). Tròn đố Vuông vẽ được đường thẳng c đi qua C sao cho ba đường thẳng a, b, c đồng quy. Sau một hồi suy nghĩ, Vuông làm như sau (H.3):
- Vẽ đường thẳng đi qua C và vuông góc với a. Đường thẳng này cắt b tại B.
- Vẽ đường thẳng đi qua C và vuông góc với b. Đường thẳng này cắt a tại A.
Vuông khẳng định rằng đường thẳng c cần vẽ chính là đường thẳng đi qua C và vuông góc với AB.
Em hãy giải thích tại sao Vuông lại khẳng định như vậy.
Lời giải:
Xét tam giác ABC ta có :
a là đường cao (vì a ⊥ BC);
b là đường cao (vì b ⊥ AC);
c là đường cao (vì c ⊥ AB).
Suy ra ba đường thẳng a, b, c đồng quy (tính chất ba đường cao trong tam giác).
Vì thế Vuông khẳng định rằng đường thẳng c cần vẽ chính là đường thẳng đi qua C và vuông góc với AB là đúng.
Lời giải sách bài tập Toán lớp 7 Bài tập ôn tập cuối năm Kết nối tri thức hay khác:
Xem thêm lời giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
SBT Toán 7 Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
SBT Toán 7 Bài 37: Hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Kết nối tri thức
- Giải SBT Toán 7 Kết nối tri thức
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải SBT Toán 7 được biên soạn bám sát Sách bài tập Toán lớp 7 Kết nối tri thức với cuộc sống (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT