Cho tam giác ABC cân tại A (góc A < 90°), các đường cao BD và CE cắt nhau tại H

Giải SBT Toán 8 Bài 5: Hình chữ nhật – Hình vuông - Chân trời sáng tạo

Bài 4 trang 72 sách bài tập Toán 8 Tập 1: Cho tam giác ABC cân tại A A^<90°, các đường cao BD và CE cắt nhau tại H. Tia phân giác của góc ABD cắt EC và AC lần lượt tại M và P. Tia phân giác của góc ACE cắt DB và AB lần lượt tại Q và N. Chứng minh rằng:

a) ABD^=ACE^;

b) BH = CH;

c) Tam giác BOC vuông cân;

d) MNPQ là hình vuông.

Quảng cáo

Lời giải:

Chú ý: Câu c bổ sung dữ kiện “O là giao điểm của BP và CN”.

Cho tam giác ABC cân tại A (góc A < 90°), các đường cao BD và CE cắt nhau tại H

a) Ta có:

∆ABD vuông tại D (do BD là đường cao ∆ABC), suy ra ABD^+BAC^=90°;

∆AEC vuông tại E (do CE là đường cao ∆ABC), suy ra ACE^+BAC^=90°.

Do đó ABD^=ACE^.

b) ∆ABC cân tại A nên ABC^=ACB^.

ABD^=ACE^ (theo câu a).

Suy ra ABC^-ABD^=ACB^-ACE^ hay B3^=C3^.

Do đó ∆HBC cân tại H nên BH = CH.

c) Ta có B2^=12ABD^ (do BP là tia phân giác ABD^) và C2^=12ACE^ (do CN là tia phân giác ACE^)

ABD^=ACE^, suy ra B2^=C2^.

∆OBC có B3^=C3^, B2^=C2^ nên B3^+B2^=C3^+C2^ hay OBC^=OCB^.

Suy ra ∆OBC cân tại O (1)

Mặt khác, vì C2^=B1^ (cùng bằng B2^) nên ta có

B2^+B3^+C2^+C3^=B2^+B3^+B1^+C3^

=EBC^+ECB^=180°-BEC^=180°-90°=90°.

OBC^+OCB^=B2^+B3^+C2^+C3^=90°

Suy ra BOC^=180°-OBC^+OCB^=180°-90°=90°.

Do đó tam giác OBC vuông tại O (2)

Từ (1) và (2) suy ra ∆OBC vuông cân tại O.

d) ∆OBC cân tại O nên OB = OC. (3)

Xét ∆BMH và ∆CQH có:

B2^=C2^ (theo câu b);

BH = CH (do ∆HBC cân tại H);

BHM^=CHQ^ (hai góc đối đỉnh).

Do đó ∆BMH= ∆CQH (g.c.g).

Suy ra BM = CQ. (4)

Từ (3) và (4) suy ra OB ‒ BM = OC ‒ CQ hay OM = OQ. (5)

Mà ∆BNQ có BO là đường cao cũng đường phân giác nên ∆BNQ cân tại B.

Suy ra BO cũng là đường trung tuyến, nên O là trung điểm của QN hay ON = OQ.(6)

Chứng minh tương tự, ta được OP = OM. (7)

Từ (5), (6), (7) suy ra OM = ON = OQ = OP.

Khi đó ON + OQ = OM + OP hay NQ = MP.

Xét tứ giác MNPQ có: OM = OP và OQ = ON nên tứ giác MNPQ là hình bình hành.

Mà NQ = MP nên MNPQ là hình chữ nhật.

Ta lại có MP ⊥ NP tại O nên MNPQ là hình vuông.

Quảng cáo

Lời giải SBT Toán 8 Bài 5: Hình chữ nhật – Hình vuông hay khác:

Quảng cáo

Xem thêm giải sách bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:

Săn SALE shopee tháng này:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 8 Tập 1 & Tập 2 hay, chi tiết của chúng tôi được biên soạn bám sát Sách bài tập Toán 8 Chân trời sáng tạo (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Chân trời sáng tạo khác
Tài liệu giáo viên