Chứng minh tổng độ dài hai đường chéo của tứ giác

Giải sách bài tập Toán 8 Bài 10: Tứ giác - Kết nối tri thức

Bài 3.3 trang 32 sách bài tập Toán 8 Tập 1: Chứng minh tổng độ dài hai đường chéo của tứ giác:

a) Bé hơn chu vi của tứ giác;

b) Lớn hơn tổng hai cạnh đối tuỳ ý của tứ giác, từ đó lớn hơn nửa chu vi của tứ giác.

Quảng cáo

Lời giải:

Chứng minh tổng độ dài hai đường chéo của tứ giác

Xét tứ giác ABCD. Chu vi tứ giác ABCD là PABCD = AB + BC + CD + DA.

a) Trong ∆ABC có AC < AB + BC (bất đẳng thức trong tam giác)

Trong ∆ACD có AC < CD + DA (bất đẳng thức trong tam giác)

Do đó AC + AC < AB + BC +  CD + DA hay 2AC < PABCD (1)

Tương tự, trong ∆ABD có BD < AD + AB

Trong ∆BCD có: BD < CD + BC

Do đó BD + BD < AD + AB + CD + BC hay 2BD < PABCD. (2)

Từ (1) và (2) suy ra 2(AC + BD) < 2PABCD, do đó AC + BD < PABCD.

b) Gọi O là giao điểm của AC và BD.

Trong ∆OAB có OA + OB > AB (bất đẳng thức trong tam giác)

Trong ∆OCD có OC + OD > CD (bất đẳng thức trong tam giác)

Nên AC + BD = OA + OC + OB + OD > AB + CD.

Trong ∆OAD có OA + OD > AD (bất đẳng thức trong tam giác)

Trong ∆OBC có OB + OC > BC (bất đẳng thức trong tam giác)

Nên AC + BD = OA + OC + OB + OD > AD + BC.

Vậy 2(AC + BD) > AB + BC + CD + DA = PABCD

Tức là AC+BD >12PABCD.

Quảng cáo

Lời giải SBT Toán 8 Bài 10: Tứ giác hay khác:

Quảng cáo

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:

Săn SALE shopee tháng này:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 8 Tập 1 & Tập 2 hay, chi tiết của chúng tôi được biên soạn bám sát Sách bài tập Toán 8 Kết nối tri thức (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 Kết nối tri thức khác
Tài liệu giáo viên