Cho biểu thức P, Rút gọn biểu thức P, Tính giá trị của biểu thức P tại x = 4

Giải SBT Toán 9 Bài 4: Một số phép biến đổi căn thức bậc hai của biểu thức đại số - Cánh diều

Bài 40 trang 67 SBT Toán 9 Tập 1: Cho biểu thức: P=2x1+2x+15xx1 với x ≥ 0, x ≠ 1.

Quảng cáo

a) Rút gọn biểu thức P.

b) Tính giá trị của biểu thức P tại x = 4.

c*) Tìm giá trị của x để P có giá trị là số nguyên.

Lời giải:

a) Với x ≥ 0, x ≠ 1, ta có:

Cho biểu thức P, Rút gọn biểu thức P, Tính giá trị của biểu thức P tại x = 4

Vậy với x ≥ 0, x ≠ 1 thì P=5x+1.

b) Thay x = 4 (thỏa mãn điều kiện) vào biểu thức P=5x+1, ta có:

P=54+1=52+1=53.

Vậy giá trị của biểu thức P tại x = 4 là 53

c*) Với x ≥ 0, x ≠ 1, ta có x+11 nên 5x+1>0 và 5x+15.

Do đó 0 < P ≤ 5.

Vì vậy, để P có giá trị là số nguyên thì P ∈{1; 2; 3; 4; 5}.

⦁ Nếu P = 1 thì 5x+1=1, suy ra x+1=5 hay x=4, do đó x = 42 hay x = 16 (thoả mãn x ≥ 0, x ≠ 1).

⦁ Nếu P = 2 thì 5x+1=2, suy ra x+1=52 hay x=32, do đó x=322 hay x=94 (thoả mãn x ≥ 0, x ≠ 1).

⦁ Nếu P = 3 thì 5x+1=3, suy ra x+1=53 hay x=23,x=232 hay x=49 (thoả mãn x ≥ 0, x ≠ 1).

⦁ Nếu P = 4 thì 5x+1=4, suy ra x+1=54 hay x=14, do đó x=142 hay x=116 (thoả mãn x ≥ 0, x ≠ 1).

⦁ Nếu P = 5 thì 5x+1=5, suy ra x+1=1 hay x=0, do đó x = 0 (thoả mãn x ≥ 0, x ≠ 1).

Vậy x16;  94;  49;  116;  0 thì P có giá trị là số nguyên.

Quảng cáo

Lời giải SBT Toán 9 Bài 4: Một số phép biến đổi căn thức bậc hai của biểu thức đại số hay khác:

Quảng cáo
Quảng cáo

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải SBT Toán 9 Cánh diều của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Tập 1 & Tập 2 (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Cánh diều khác