Giải Toán 10 trang 103 Tập 2 Cánh diều
Với Giải Toán 10 trang 103 Tập 2 trong Bài tập cuối chương 7 Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 103.
Giải Toán 10 trang 103 Tập 2 Cánh diều
Bài 1 trang 103 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho A(3; 4); B(2; 5). Tọa độ của là:
A. (1; –1).
B. (1; 1).
C. (– 1; 1).
D. (– 1; – 1).
Lời giải:
Đáp án đúng là: C.
Ta có: . Vậy .
Bài 2 trang 103 Toán lớp 10 Tập 2: Vectơ nào sau đây là một vectơ pháp tuyến của đường thẳng Δ: 2x – 3y + 4 = 0?
A. .
B. .
C. .
D. .
Lời giải:
Đáp án đúng là: D.
Đường thẳng ∆: 2x – 3y + 4 = 0 có một vectơ pháp tuyến là .
Bài 3 trang 103 Toán lớp 10 Tập 2: Tọa độ tâm I của đường tròn (C): (x + 6)2 + (y – 12)2 = 81 là:
A. (6; – 12).
B. (– 6; 12).
C. (– 12; 6).
D.(12; – 6).
Lời giải:
Đáp án đúng là: B.
Ta có: (x + 6)2 + (y – 12)2 = 81 ⇔ (x – (– 6))2 + (y – 12)2 = 92.
Do đó đường tròn (C) có tâm I(– 6; 12).
Bài 4 trang 103 Toán lớp 10 Tập 2: Khoảng cách từ điểm A(1; 1) đến đường thẳng Δ: 3x + 4y + 13 = 0 bằng:
A. 1.
B. 2.
C. 3.
D. 4.
Lời giải:
Đáp án đúng là: D.
Khoảng cách từ điểm A(1; 1) đến đường thẳng Δ: 3x + 4y + 13 = 0 là
Bài 5 trang 103 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có M(2; 1), N(– 1; 3), P(4; 2).
a) Tìm tọa độ của các vectơ ;
b) Tính tích vô hướng ;
c) Tính độ dài các đoạn thẳng MN, MP;
d) Tính ;
e) Tìm tọa độ trung điểm I của NP và trọng tâm G của tam giác MNP.
Lời giải:
a) Tọa độ của vectơ chính là tọa độ của điểm M(2; 1), do đó .
Ta có: , do đó .
, do đó .
b) Ta có: .
e) Tọa độ trung điểm I của NP là hay .
Tọa độ trọng tâm G của tam giác MNP là hay .
Bài 6 trang 103 Toán lớp 10 Tập 2: Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm A(– 3; 2) và có một vectơ pháp tuyến là ;
b) d đi qua điểm B(– 2; – 5) và có một vectơ chỉ phương là ;
c) d đi qua hai điểm C(4; 3) và D(5; 2).
Lời giải:
a) Đường thẳng d đi qua điểm A(– 3; 2) và có một vectơ pháp tuyến là , do đó phương trình tổng quát của đường thẳng d là: 2(x – (– 3)) – 3(y – 2) = 0 hay 2x – 3y + 12 = 0.
Đường thẳng d có một vectơ pháp tuyến là , do đó nó có một vectơ chỉ phương là .
Đường thẳng d có một vectơ chỉ phương là , suy ra nó có một vectơ pháp tuyến là .
Vậy phương trình tổng quát của đường thẳng d là 6(x + 2) + 7(y + 5) = 0 hay 6x + 7y + 47 = 0.
c) Ta có: .
Đường thẳng d đi qua 2 điểm C, D nên có một vectơ chỉ phương là .
Đường thẳng d có một vectơ pháp tuyến là .
Vậy phương trình tổng quát của đường thẳng d là 1(x – 4) + 1(y – 3) = 0 hay x + y – 7 = 0.
Bài 7 trang 103 Toán lớp 10 Tập 2: Lập phương trình đường tròn (C) trong mỗi trường hợp sau:
a) (C) có tâm I(– 4; 2) và bán kính R = 3;
b) (C) có tâm P(3; – 2) và đi qua điểm E(1; 4);
c) (C) có tâm Q(5; – 1) và tiếp xúc với đường thẳng Δ: 3x + 4y – 1 = 0;
d) (C) đi qua ba điểm A(– 3; 2), B(– 2; – 5) và D(5; 2).
Lời giải:
a) Đường tròn (C) có tâm I(– 4; 2) và bán kính R = 3.
Vậy phương trình đường tròn (C) là (x – (– 4))2 + (y – 2)2 = 32 hay (x + 4)2 + (y – 2)2 = 9.
b) Đường tròn (C) có tâm P(3; – 2) và đi qua điểm E(1; 4) nên bán kính của đường tròn chính bằng khoảng cách từ P đến E.
Do đó, R = PE = .
Vậy phương trình đường tròn (C) là hay (x – 3)2 + (y + 2)2 = 40.
c) Đường tròn (C) có tâm Q(5; – 1) và tiếp xúc với đường thẳng Δ: 3x + 4y – 1 = 0, do đó bán kính của đường tròn chính bằng khoảng cách từ tâm Q đến đường thẳng ∆.
Vậy phương trình đường tròn (C) là (x – 5)2 + (y – (– 1))2 = 22 hay (x – 5)2 + (y + 1)2 = 4.
d) Đường tròn (C) đi qua ba điểm A(– 3; 2), B(– 2; – 5) và D(5; 2).
Giả sử tâm của đường tròn là điểm I(a; b).
Ta có IA = IB = ID ⇔ IA2 = IB2 = ID2.
Vì IA2 = IB2, IB2 = ID2 nên
Đường tròn tâm I(1; – 1) bán kính R = ID =
Phương trình đường tròn (C) là .
Vậy phương trình đường tròn (C) là .
Lời giải bài tập Toán 10 Bài tập cuối chương 7 hay khác:
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Cánh diều
- Giải Chuyên đề học tập Toán 10 Cánh diều
- Giải SBT Toán 10 Cánh diều
- Giải lớp 10 Cánh diều (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều