Giải Toán 10 trang 75 Tập 2 Cánh diều

Với Giải Toán 10 trang 75 Tập 2 trong Bài 3: Phương trình đường thẳng Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 75.

Giải Toán 10 trang 75 Tập 2 Cánh diều

Luyện tập 1 trang 75 Toán lớp 10 Tập 2: Cho đường thẳng Δ có phương trình tham số

Cho đường thẳng denta có phương trình tham số

a) Chỉ ra tọa độ của hai điểm thuộc đường thẳng Δ.

b) Điểm nào trong các điểm C(– 1; – 1), D(1; 3) thuộc đường thẳng Δ.

Quảng cáo

Lời giải:

Cho đường thẳng denta có phương trình tham số

Điểm A(1; – 2) thuộc đường thẳng ∆.

+ Ứng với t = 1 ta có

Điểm B(– 1; – 1) thuộc đường thẳng ∆.

Chú ý: Ta chỉ cần lấy một số thực t bất kì thay vào phương trình tham số, ta sẽ được tọa độ 1 điểm thuộc đường thẳng ∆.

b) Theo câu a) điểm B(– 1; – 1) thuộc đường thẳng Δ ứng với t = 1, khi đó C ≡ B.

Vậy điểm C(– 1; – 1) thuộc đường thẳng ∆.

Thay tọa độ điểm D(1; 3) vào đường thẳng Δ ta được:

Cho đường thẳng denta có phương trình tham số

Vậy điểm D(1; 3) không thuộc đường thẳng ∆.

Hoạt động 3 trang 75 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆. Vẽ vectơ n n0 có giá vuông góc với đường thẳng ∆ (Hình 27).

Trong mặt phẳng tọa độ Oxy, cho đường thẳng denta

Quảng cáo


Lời giải:

Cách vẽ:

- vẽ 1 đoạn thẳng vuông góc với đường thẳng ∆.

- Vẽ hướng mũi tên trên đoạn thẳng đó, ta được vectơ chỉ phương thỏa mãn yêu cầu bài toán.

Hoạt động 4 trang 75 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆ đi qua điểm M0(x0; y0) và có vectơ pháp tuyến n=a; b. Xét điểm M(x; y) nằm trên ∆ (Hình 28)

Trong mặt phẳng tọa độ Oxy, cho đường thẳng ∆ đi qua điểm M0 và có vectơ pháp tuyến n

a) Nhận xét về phương của hai vectơ nM0M.

b) Tìm mối liên hệ giữa tọa độ của điểm M với tọa độ của điểm M0 và tọa độ của vectơ pháp tuyến n.

Quảng cáo

Lời giải:

a) Vectơ n là vectơ pháp tuyến của đường thẳng ∆ nên giá của vectơ n vuông góc với đường thẳng ∆.

Đường thẳng ∆ đi qua điểm M0 và M, nên đường thẳng ∆ chính là đường thẳng MM0. Khi đó vectơ M0M có giá chính là đường thẳng ∆.

Do đó giá của vectơ n và giá của vectơ M0M vuông góc với nhau.

Vậy hai vectơ hai vectơ nM0M không cùng phương.

b) Ta có: M0M=xx0; yy0, n=a; b.

Xét điểm M(x; y) thuộc ∆. Vì M0Mn nên

M0M . n=0a(x – x0) + b(y – y0) = 0 ⇔ ax + by – ax0 – by0 = 0.

Lời giải bài tập Toán 10 Bài 3: Phương trình đường thẳng hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Cánh diều khác
Tài liệu giáo viên