Giải Toán 10 trang 12 Tập 2 Chân trời sáng tạo
Với Giải Toán 10 trang 12 Tập 2 trong Bài 2: Giải bất phương trình bậc hai một ẩn Toán 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 12.
Giải Toán 10 trang 12 Tập 2 Chân trời sáng tạo
Thực hành 2 trang 12 Toán lớp 10 Tập 2: Giải các bất phương trình bậc hai sau:
a) 15x2 + 7x – 2 ≤ 0;
b) – 2x2 + x – 3 < 0.
Lời giải:
a) Xét tam thức bậc hai f(x) = 15x2 + 7x – 2 có ∆ = 72 – 4.(-2).15 = 169 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = , x2 = và a = 15 > 0.
Suy ra f(x) nhỏ hơn hoặc bằng 0 khi x thuộc khoảng .
Vậy bất phương trình 15x2 + 7x – 2 ≤ 0 có tập nghiệm là S = .
b) Xét tam thức bậc hai g(x) = – 2x2 + x – 3 có ∆ = 12 – 4.(-2).(-3) = -23 < 0 và a = -2. Do đó g(x) vô nghiệm.
Suy ra g(x) luôn âm với mọi x ∈ ℝ.
Vậy bất phương trình – 2x2 + x – 3 < 0 có tập nghiệm S = ℝ.
Vận dụng trang 12 Toán lớp 10 Tập 2: Hãy giải bất phương trình lập được trong hoạt động khám phá và tìm giá bán gạo sao cho cửa hàng đó có lãi.
Lời giải:
Ta có x là giá bán của một kilôgam gạo
Xét tam thức bậc hai f(x) = - 3x2 + 200x – 2 325 có ∆ = 2002 – 4.(-3).(-2 325) = 12 100 > 0. Do đó phương trình có hai nghiệm phân biệt là x1 = 15 và x2 = và a = -3 < 0.
Suy ra f(x) dương khi x thuộc khoảng .
Cửa hàng có lãi từ loại gạo đó khi I > 0 hay f(x) > 0.
Suy ra với x thuộc khoảng thì cửa hàng có lãi từ loại gạo đó.
Vậy với giá bán gạo trong khoảng 15 nghìn đồng đến nghìn đồng thì cửa hàng có lãi từ loại gạo đó.
Bài 1 trang 12 Toán lớp 10 Tập 2: Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các bất phương trình bậc hai sau đây:
a) x2 + 2,5x – 1,5 ≤ 0;
b) – x2 – 8x – 16 < 0
c) – 2x2 + 11x – 12 > 0
d) x2 + x + 1 ≤ 0
Lời giải:
a)
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số f(x) cắt trục hoành tại hai điểm có hoành độ lần lượt là x1 = -3 và x2 = hay với x1 = -3 và x2 = thì f(x) = 0.
Trong hai khoảng (-∞; - 3) và đồ thị hàm số f(x) nằm phía trên trục hoành hay f(x) > 0 khi x thuộc hai khoảng (-∞; - 3) và .
Trong khoảng đồ thị hàm số f(x) nằm phía dưới trục hoành hay f(x) < 0 khi x thuộc khoảng .
Vậy bất phương trình x2 + 2,5x – 1,5 ≤ 0 có tập nghiệm là .
b)
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số f(x) cắt trục hoành tại một điểm có hoành độ x = -4 hay f(x) = 0 khi x = -4.
Với x ≠ -4 thì đồ thị hàm số f(x) nằm phía dưới trục hoành nên f(x) < 0 với x ≠ -4.
Vậy bất phương trình – x2 – 8x – 16 < 0 có tập nghiệm là S = ℝ\{-4}.
c)
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt x1 = và x2 = 4 hay f(x) = 0 khi x1 = và x2 = 4.
Đồ thị hàm số f(x) nằm phía dưới trục hoành với x thuộc hai khoảng và (4; +∞) hay f(x) < 0 với x thuộc ∪ (4; +∞).
Đồ thị hàm số f(x) nằm phía trên trục hoành với x thuộc khoảng hay f(x) > 0 với x thuộc khoảng .
Vậy bất phương trình – 2x2 + 11x – 12 > 0 có tập nghiệm S = .
d)
Dựa vào hình vẽ ta thấy:
Đồ thi hàm số f(x) nằm phía trên trục hoành với mọi x hay f(x) > 0 với x ∈ ℝ.
Vậy bất phương trình x2 + x + 1 ≤ 0 có tập nghiệm S = .
Lời giải bài tập Toán 10 Bài 2: Giải bất phương trình bậc hai một ẩn hay khác:
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải SBT Toán 10 Chân trời sáng tạo
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST