Bài 9.5 trang 82 Toán 10 Tập 2 - Kết nối tri thức

Giải Toán 10 Kết nối tri thức Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Quảng cáo

Bài 9.5 trang 82 Toán 10 Tập 2: Hai bạn An và Bình mỗi người gieo một con xúc xắc cân đối. Tính xác suất để:

a) Số chấm xuất hiện trên mỗi con xúc xắc bé hơn 3;

b) Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5;

c) Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6;

d) Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố. 

Lời giải:

Các con xúc xắc là cân đối nên các kết quả xảy ra có thể đồng khả năng. 

Do gieo một con xúc xắc thì số chấm xuất hiện có thể là 1, 2, 3, 4, 5, 6 nên khi gieo 2 con xúc xắc thì số khả năng xảy ra là n(Ω) = 6 . 6 = 36.

Quảng cáo


Các kết quả của không gian mẫu được cho trong bảng:

 

1

2

3

4

5

6

1

(1; 1)

(1; 2)

(1; 3)

(1; 4)

(1; 5)

(1; 6)

2

(2; 1)

(2; 2)

(2; 3)

(2; 4)

(2; 5)

(2; 6)

3

(3; 1)

(3; 2)

(3; 3)

(3; 4)

(3; 5)

(3; 6)

4

(4; 1)

(4; 2)

(4; 3)

(4; 4)

(4; 5)

(4; 6)

5

(5; 1)

(5; 2)

(5; 3)

(5; 4)

(5; 5)

(5; 6)

6

(6; 1)

(6; 2)

(6; 3)

(6; 4)

(6; 5)

(6; 6)

a) Gọi biến cố A: “Số chấm xuất hiện trên mỗi con xúc xắc bé hơn 3”.

Các kết quả thuận lợi của A là: (1; 1), (1; 2), (2; 1), (2; 2).

Do đó, n(A) = 4. 

Vậy PA=nAnΩ=436=19.

Quảng cáo

b) Gọi biến cố B: “Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5”.

Các kết quả thuận lợi của B là: (5; 1), (5; 2), (5; 3), (5; 4), (5; 5), (5; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5), (6; 6).

Do đó, n(B) = 12. 

Vậy PB=nBnΩ=1236=13.

c) Gọi biến cố C: “Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6”.

Các kết quả thuận lợi của C là: (1; 1), (1; 2), (1; 3), (1; 4), (1; 5), (2; 1), (2; 2), (3; 1), (4; 1), (5; 1).

Do đó, n(C) = 10. 

Vậy PC=nCnΩ=1036=518.

d) Gọi biến cố D: “Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố”.

Các kết quả thuận lợi của D là: (1; 1), (1; 2), (2; 1), (1; 4), (4; 1), (1; 6), (6; 1), (2; 3); (2; 5), (3; 2), (5; 2), (3; 4), (4; 3), (5; 6), (6; 5).

Do đó, n(D) = 15. 

Vậy PD=nDnΩ=1536=512.

Quảng cáo

Lời giải bài tập Toán 10 Bài 26: Biến cố và định nghĩa cổ điển của xác suất hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 26: Biến cố và định nghĩa cổ điển của xác suất:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên