HĐ5 trang 52 Toán 10 Tập 2 - Kết nối tri thức

Giải Toán 10 Kết nối tri thức Bài 22: Ba đường conic

Quảng cáo

HĐ5 trang 52 Toán 10 Tập 2: Cho parabol (P): y = 14x2. Xét F(0; 1) và đường thẳng Δ: y + 1 = 0. Với điểm M(x; y) bất kì, chứng minh rằng MF = d(M, Δ) ⇔ M(x; y) thuộc (P).

Lời giải:

Ta có: MF=x2+y12

d(M, ∆) = y+102+12=y+1.

+) Giả sử MF = d(M, ∆), ta cần chứng minh M(x; y) thuộc (P). 

Thật vậy, MF = d(M, ∆)

Bình phương cả hai vế của phương trình trên ta được:

x2 + (y – 1)2 = (y + 1)2 

⇔ x2 – 4y = 0 ⇔ y = 14x2

Vậy M thuộc (P). 

Quảng cáo


+) Giả sử M(x; y) thuộc (P), ta cần chứng minh MF = d(M, Δ).

M(x; y) thuộc (P) nên y = 14x2 hay x2 = 4y, thay vào biểu thức tính MF ta có: 

MF = x2+y12=4y+y12=4y+y22y+1

=y2+2y+1=y+12=y+1 =d(M, ∆). 

Vậy MF = d(M, Δ).

Lời giải bài tập Toán 10 Bài 22: Ba đường conic hay, chi tiết khác:

Quảng cáo
Quảng cáo

Các bài học để học tốt Toán 10 Bài 22: Ba đường conic:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Kết nối tri thức khác
Tài liệu giáo viên