Giải Toán 11 trang 27 Tập 1 Cánh diều

Với Giải Toán 11 trang 27 Tập 1 trong Bài 3: Hàm số lượng giác và đồ thị Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 27.

Giải Toán 11 trang 27 Tập 1 Cánh diều

Quảng cáo

Hoạt động 8 trang 27 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cosx ở Hình 27.

Hoạt động 8 trang 27 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Nêu tập giá trị của hàm số y = cosx.

b) Trục tung có là trục đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cosx.

c) Bằng cách dịch chuyển đồ thị hàm số y = cosx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta nhận được đồ thị hàm số y = cosx trên đoạn [π; 3π] hay không? Hàm số y = cosx có tuần hoàn hay không?

Quảng cáo

d) Tìm khoảng đồng biến, nghịch biến của hàm số y = cosx.

Lời giải:

a) Tập giá trị của hàm số y = cosx là [‒1; 1].

b) Trục tung là trục đối xứng của đồ thị hàm số.

Do đó hàm số y = cosx là hàm số chẵn.

c)

‒ Bằng cách dịch chuyển đồ thị hàm số y = cosx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta sẽ nhận được đồ thị hàm số y = cosx trên đoạn [π; 3π].

Làm tương tự như trên ta sẽ được đồ thị hàm số y = cosx trên ℝ.

‒ Xét hàm số f(x) = y = cosx trên ℝ, với T = 2π và x ∈ ℝ ta có:

Quảng cáo

• x + 2π ∈ ℝ và x – 2π ∈ ℝ;

• f(x + 2π) = f(x)

Do đó hàm số y = cosx là hàm số tuần hoàn với chu kì T = 2π.

d) Quan sát đồ thị hàm số y = cosx ta thấy:

• Hàm số đồng biến trên mỗi khoảng (‒3π; ‒2π); (‒π; 0); (π; 2π); …

Ta có: (‒3π; ‒2π) = (‒π ‒ 2π; 0 ‒ 2π);

(π; 2π) = (‒π + 2π; 0 + 2π);

Do đó ta có thể viết hàm số đồng biến trên mỗi khoảng (‒π + k2π; k2π) với k ∈ ℤ.

• Hàm số nghịch biến trên mỗi khoảng (‒2π; ‒π); (0; π); (2π; 3π); …

Ta có: (‒2π; ‒π) = (0 ‒ 2π; π ‒ 2π);

Quảng cáo

(2π; 3π) = (0 + 2π; π + 2π);

Do đó ta có thể viết hàm số nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ ℤ.

Hoạt động 9 trang 27 Toán 11 Tập 1: Xét tập hợp D = R\π2+kπ|k. Với mỗi số thực x ∈ D, hãy nêu định nghĩa tanx.

Lời giải:

Nếu cosx ≠ 0, tức x\π2+kπ|k hay x ∈ D thì ta có: tanx = sinxcosx.

Luyện tập 4 trang 27 Toán 11 Tập 1: Hàm số y = cosx đồng biến hay nghịch biến trên khoảng (‒2π; ‒π)?

Lời giải:

Do (‒2π; ‒π) = (0 – 2π; π – 2π) nên hàm số nghịch biến trên khoảng (‒2π; ‒π).

Hoạt động 9 trang 27 Toán 11 Tập 1: Xét tập hợp D = R\π2+kπ|k. Với mỗi số thực x ∈ D, hãy nêu định nghĩa tanx.

Lời giải:

Nếu cosx ≠ 0, tức x\π2+kπ|k hay x ∈ D thì ta có: tanx = sinxcosx.

Lời giải bài tập Toán 11 Bài 3: Hàm số lượng giác và đồ thị hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 Cánh diều khác
Tài liệu giáo viên