Giải Toán 11 trang 57 Tập 2 Cánh diều
Với Giải Toán 11 trang 57 Tập 2 trong Bài tập cuối chương 6 Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 57.
Giải Toán 11 trang 57 Tập 2 Cánh diều
Bài 12 trang 57 Toán 11 Tập 2: Tập nghiệm của bất phương trình là:
A. (–∞; 16).
B. (16; +∞).
C. (0; 16).
D. (–∞; 0).
Lời giải:
Đáp án đúng là: C
Ta có
Vậy bất phương trình đã cho có tập nghiệm là (0; 16).
Bài 13 trang 57 Toán 11 Tập 2: Cho ba số thực dương a, b, c khác 1 và đồ thị ba hàm số mũ y = ax, y = bx, y = cx được cho bởi Hình 14.
Kết luận nào sau đây là đúng đối với ba số a, b, c?
A. c < a < b.
B. c < b < a.
C. a < b < c.
D. b < c < a.
Lời giải:
Đáp án đúng là: A
Từ các đồ thị hàm số trên Hình 14 ta thấy:
⦁ Hàm số y = cx nghịch biến trên ℝ nên 0 < c < 1;
⦁ Hai hàm số y = ax và y = bx đồng biến trên ℝ nên a > 1 và b > 1.
Thay cùng giá trị của x = x0 (với x0 > 0) vào hai hàm số y = ax và y = bx ta thấy nên a < b
Suy ra c < a < b.
Bài 14 trang 57 Toán 11 Tập 2: Cho ba thực dương a, b, c khác 1 và đồ thị ba hàm số lôgarit y = logax, y = logbx, y = logcx được cho bởi Hình 15. Kết luận nào sau đây là đúng với ba số a, b, c?
A. c < a < b.
B. c < b < a.
C. a < b < c.
D. b < c < a.
Lời giải:
Đáp án đúng là: D
Từ các đồ thị hàm số trên Hình 15 ta thấy:
⦁ Hàm số y = logax đồng biến trên (0; +∞) nên a > 1;
⦁ Hai hàm số y = logbx và y = logcx nghịch biến trên (0; +∞) nên 0 < b < 1; 0 < c < 1.
Thay cùng giá trị của x = x0 (với x0 ∈ (0; +∞)) vào hai hàm số ta thấy logbx0 > logcx0
Mà 0 < b < 1; 0 < c < 1 nên b < c.
Suy ra b < c < a.
Bài 15 trang 57 Toán 11 Tập 2: Viết các biểu thức sau về lũy thừa cơ số a:
a) với a = 5. b) với
Lời giải:
a) Ta có:
Vậy
b)
Ta có:
Vậy
Bài 16 trang 57 Toán 11 Tập 2: Cho x, y là các số thực dương. Rút gọn biểu thức sau:
Lời giải:
Ta có:
Bài 17 trang 57 Toán 11 Tập 2: Tìm tập xác định của mỗi hàm số sau:
a) b)
c) d)
Lời giải:
a) Hàm số xác định ⇔ 2x – 3 ≠ 0 ⇔2x ≠ 3 ⇔ x ≠ log23.
Vậy tập xác định của hàm số là D = ℝ \ {log23}.
b) Hàm số xác định ⇔ 25 – 5x ≥ 0 ⇔5x ≤ 25 ⇔5x ≤ 52 ⇔ x ≤ 2
Vậy tập xác định của hàm số là D = (–∞; 2].
c) Hàm số xác định
Vậy tập xác định của hàm số là D = (0; +∞) \ {e}.
d) Hàm số xác định
Vậy tập xác định của hàm số là D = (0; 3].
Lời giải bài tập Toán 11 Bài tập cuối chương 6 hay khác:
Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Cánh diều
- Giải Chuyên đề học tập Toán 11 Cánh diều
- Giải SBT Toán 11 Cánh diều
- Giải lớp 11 Cánh diều (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều