Bài 7 trang 79 Toán 12 Tập 2 Cánh diều

Giải Toán 12 Bài 2: Phương trình đường thẳng - Cánh diều

Bài 7 trang 79 Toán 12 Tập 2: Tính góc giữa hai đường thẳng ∆1, ∆2 trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ):

Quảng cáo

Bài 7 trang 79 Toán 12 Cánh diều Tập 2 | Giải Toán 12

Lời giải:

a) Hai đường thẳng ∆1 và ∆2 có vectơ chỉ phương lần lượt là u1=1;3;0,u2=3;1;0.

Ta có: cos (∆1, ∆) = 13+31+0012+32+0232+12+02=234=32.

Suy ra (∆1, ∆) = 30°.

b) Hai đường thẳng ∆1 và ∆2 có vectơ chỉ phương lần lượt là u1=2;1;1, u2=3;1;2.

Ta có: cos (∆1, ∆) = 23+11+1222+12+1232+12+22=9614=32114.

Suy ra (∆1, ∆) ≈ 11°.

c) Hai đường thẳng ∆1 và ∆2 có vectơ chỉ phương lần lượt là u1=1;1;1u2=1;3;1.

Ta có: cos (∆1, ∆) = 11+13+1112+12+1212+32+12=1311=3333.

Suy ra (∆1, ∆) ≈ 80°.

Quảng cáo

Lời giải bài tập Toán 12 Bài 2: Phương trình đường thẳng hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Cánh diều khác
Tài liệu giáo viên