Giải Toán 12 trang 65 Tập 2 Chân trời sáng tạo
Với Giải Toán 12 trang 65 Tập 2 trong Bài 3: Phương trình mặt cầu Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 65.
Giải Toán 12 trang 65 Tập 2 Chân trời sáng tạo
Bài 1 trang 65 Toán 12 Tập 2: Viết phương trình mặt cầu (S):
a) Có tâm I(7; −3; 0), bán kính R = 8;
b) Có tâm M(3; 1; −4) và đi qua điểm N(1; 0; 1);
c) Có đường kính AB với A(4; 6; 8) và B(2; 4; 4).
Lời giải:
a) Mặt cầu (S) có tâm I(7; −3; 0), bán kính R = 8 có phương trình là
(x – 7)2 + (y + 3)2 + z2 = 64.
b) Bán kính của mặt cầu là
Mặt cầu (S) có tâm M(3; 1; −4) , bán kính có phương trình là:
(x – 3)2 + (y – 1)2 + (z + 4)2 = 30.
c) Có I(3; 5; 6) là trung điểm của AB, bán kính của mặt cầu là .
Mặt cầu (S) có tâm I(3; 5; 6) và bán kính có phương trình là:
(x – 3)2 + (y – 5)2 + (z – 6)2 = 6.
Bài 2 trang 65 Toán 12 Tập 2: Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 5x – 7y + z – 1 = 0;
b) x2 + y2 + z2 + 4x + 6y – 2z + 100 = 0;
c) x2 + y2 + z2 – x – y – z + = 0.
Lời giải:
a) Phương trình x2 + y2 + z2 + 5x – 7y + z – 1 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với .
Có .
Do đó đây là phương trình mặt cầu với tâm .
b) Phương trình x2 + y2 + z2 + 4x + 6y – 2z + 100 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = −2; b = −3; c = 1 và d = 100.
Có a2 + b2 + c2 – d = 4 + 9 + 1 – 100 = −86 < 0.
Do đó đây không phải là phương trình mặt cầu.
c) Phương trình x2 + y2 + z2 – x – y – z + = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với .
Có .
Do đó đây là phương trình mặt cầu với tâm và .
Bài 3 trang 65 Toán 12 Tập 2: Cho hai điểm A(1; 0; 0) và B(5; 0; 0). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Lời giải:
Ta có .
Có ⇔ (x – 1)(x – 5) + y2 + z2 = 0
⇔ x2 – 6x + 9 + y2 + z2 – 4 = 0
⇔ (x – 3)2 + y2 + z2 = 4.
Do đó M luôn thuộc mặt cầu tâm I(3; 0; 0) và R = 2.
Bài 4 trang 65 Toán 12 Tập 2: Phần mềm mô phỏng thiết bị thám hiểm đại dương có dạng hình cầu trong không gian Oxyz. Cho biết tọa độ tâm mặt cầu là I(360; 200; 400) và bán kính r = 2 m. Viết phương trình mặt cầu.
Lời giải:
Mặt cầu có tâm I(360; 200; 400) và bán kính r = 2 có phương trình là:
(x – 360)2 + (y – 200)2 + (z – 400)2 = 4.
Bài 5 trang 65 Toán 12 Tập 2: Người ta muốn thiết kế một bồn chứa khí hóa lỏng hình cầu bằng phần mềm 3D. Cho biết phương trình bề mặt của bồn chứa là (S): (x – 6)2 + (y – 6)2 + (z – 6)2 = 25. Phương trình mặt phẳng chứa nắp là (P): z = 10.
a) Tìm tâm và bán kính của bồn chứa.
b) Tính khoảng cách từ tâm bồn chứa đến mặt phẳng chứa nắp.
Lời giải:
a) Tâm của bồn chứa I(6; 6; 6) và bán kính R = 5.
b) Ta có .
Lời giải bài tập Toán 12 Bài 3: Phương trình mặt cầu hay khác:
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes
Toán 12 Bài 1: Tính giá trị gần đúng tích phân bằng máy tính cầm tay
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST