Bài 1.21 trang 32 Toán 12 Tập 1 - Kết nối tri thức

Giải Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số - Kết nối tri thức

Bài 1.21 trang 32 Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

Quảng cáo

a) y = −x3 + 3x + 1;                           b) y = x3 + 3x2 – x – 1.

Lời giải:

a) y = −x3 + 3x + 1

1. Tập xác định của hàm số là ℝ.

2. Sự biến thiên

+) y' = −3x2 + 3; y' = 0 ⇔ −3x2 + 3 = 0 ⇔ x = 1 hoặc x = −1.

+) Trên khoảng (−1; 1), y' > 0 nên hàm số đồng biến.

Trên các khoảng (−∞; −1) và (1; +∞), y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó.

+) Hàm số đạt cực tiểu tại x = −1, giá trị cực tiểu yCT = −1. Hàm số đạt cực đại tại x = 1, giá trị cực đại y = 3.

+) Giới hạn tại vô cực: limx+x3+3x+1=limx+x31+3x2+1x3=;

limxx3+3x+1=limxx31+3x2+1x3=+

+) Bảng biến thiên

Bài 1.21 trang 32 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

3. Đồ thị

+) Giao điểm của đồ thị hàm số với trục tung là (0; 1).

+) Đồ thị hàm số đi qua điểm (−1; −1); (1; 3).

+) Đồ thị có tâm đối xứng là (0; 1).

Bài 1.21 trang 32 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) y = x3 + 3x2 – x – 1

1. Tập xác định của hàm số là ℝ.

2. Sự biến thiên

+) y' = 3x2 + 6x – 1; y' = 0 ⇔ 3x2 + 6x – 1 = 0 ⇔ x=3+233 hoặc x=3233.

+) Trên khoảng 3233;3+233, y' < 0 nên hàm số nghịch biến.

Trên các khoảng ;32333+233;+, y' > 0 nên hàm số đồng biến trên các khoảng đó.

+) Hàm số đạt cực đại tại x=3233 và đạt cực tiểu tại x=3+233.

+) Giới hạn tại vô cực:

limx+x3+3x2x1=limx+x31+3x1x21x3=+; 

limxx3+3x2x1=limxx31+3x1x21x3=

+) Bảng biến thiên

Bài 1.21 trang 32 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

3. Đồ thị

+) Đồ thị hàm số giao Oy tại (0; −1).

+) Đồ thị hàm số đi qua điểm (−2; 5); (1; 2).

+) Đồ thị có tâm đối xứng là (−1; 2).

Bài 1.21 trang 32 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

Quảng cáo

Lời giải bài tập Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 12 Kết nối tri thức khác