Bài 6.10 trang 78 Toán 12 Tập 2 - Kết nối tri thức

Giải Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes - Kết nối tri thức

Bài 6.10 trang 78 Toán 12 Tập 2: Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên.

Quảng cáo

a) Tính xác suất để vận động viên này đạt huy chương vàng;

b) Giả sử vận động viên được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I.

Lời giải:

a) Gọi A là biến cố: “VĐV được chọn thuộc đội I”;

B là biến cố: “VĐV được chọn thuộc đội II”;

E là biến cố: “VĐV được chọn đạt HCV”.

(Với VĐV: vận động viên, HCV: huy chương vàng).

Ta có B = A¯.

Ta cần tính P(E). Theo công thức xác suất toàn phần, ta có

P(E) = P(A) ∙ P(E | A) + PA¯.PE|A¯.

Theo bài ra ta có: PA=512, PA¯=PB=712.

P(E | A) là xác suất để VĐV thuộc đội I đoạt HCV. Theo bài ra ta có P(E | A) = 0,65.

PE|A¯ là xác suất để VĐV thuộc đội II đoạt HCV. Theo bài ra ta có PE|A¯ = 0,55.

Thay vào ta được P(E) = 5120,65+7120,550,5917.

Vậy xác suất để vận động viên này đạt huy chương vàng là khoảng 0,5917.

b) Ta có xác suất để vận động viên được chọn thuộc đội I, biết rằng vận động viên này đạt huy chương vàng, chính là xác suất P(A | E).

Theo công thức Bayes và kết quả ở câu a) ta có

PA|E=PAPE|APE5120,650,59170,4577

Quảng cáo

Lời giải bài tập Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 Kết nối tri thức khác
Tài liệu giáo viên