Luyện tập 1 trang 73 Toán 12 Tập 2 - Kết nối tri thức
Giải Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes - Kết nối tri thức
Luyện tập 1 trang 73 Toán 12 Tập 2: Trở lại tình huống mở đầu Mục 1. Tính xác suất để nhà tổ chức sự kiện bán hết vé.
Lời giải:
Gọi A là biến cố: “Trời mưa” và B là biến cố: “Bán hết vé”.
Từ HĐ 1a, ta có: P(A) = 0,75; P() = 1 – P(A) = 0,25;
P(B | A) = 0,4; = 0,9.
Thay vào công thức xác suất toàn phần ta được
P(B) = P(A) ∙ P(B | A) + P() ∙ = 0,75 ∙ 0,4 + 0,25 ∙ 0,9 = 0,525.
Vậy xác suất để nhà tổ chức sự kiện bán hết vé là 0,525.
Lời giải bài tập Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes hay, chi tiết khác:
HĐ1 trang 72 Toán 12 Tập 2: Hình thành công thức xác suất toàn phần ....
HĐ2 trang 75 Toán 12 Tập 2: Phân biệt P(A | B) và P(B | A) Tình huống mở đầu ....
Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải SBT Toán 12 Kết nối tri thức
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT