Bài 4.37 trang 87 Toán 7 Tập 1 - Kết nối tri thức

Giải Toán 7 Bài tập cuối chương 4

Bài 4.37 trang 87 Toán 7 Tập 1: Cho M, N là hai điểm phân biệt nằm trên đường trung trực của đoạn thẳng AB sao cho AM = AN. Chứng minh rằng MB = NB và góc AMB bằng góc ANB.

Quảng cáo

Lời giải:

Bài 4.37 trang 87 Toán 7 Tập 1 | Kết nối tri thức Giải Toán 7

Do M nằm trên đường trung trực của đoạn thẳng AB nên MA = MB.

Do N nằm trên đường trung trực của đoạn thẳng AB nên NA = NB.

Mà MA = NA (theo giải thiết có AM = AN) nên MA = MB = NA = NB.

Suy ra MB = NB.

Xét tam giác AMB và tam giác ANB có:

MA = NA (giả thiết)

MB = NB (chứng minh trên)

AB: cạnh chung

Do đó, ∆AMB = ∆ANB (c – c – c).

Suy ra AMB^=ANB^ (hai góc tương ứng).

Vậy MB = NB và AMB^=ANB^.

Lời giải bài tập Toán 7 Bài tập cuối chương 4 hay khác:

Quảng cáo

Các bài học để học tốt Toán 7 Bài tập cuối chương 4:

Quảng cáo

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Kết nối tri thức với cuộc sống (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác
Tài liệu giáo viên