Giải Toán 9 trang 100 Tập 1 Cánh diều

Với Giải Toán 9 trang 100 Tập 1 trong Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn Toán lớp 9 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 100.

Giải Toán 9 trang 100 Tập 1 Cánh diều

Quảng cáo

Bài 2 trang 100 Toán 9 Tập 1: Xác định vị trí tương đối của hai đường tròn (O) và (O’) trong mỗi hình 17a, 17b, 17c, 17d:

Bài 2 trang 100 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

a) Ta có:

⦁ Hai đường tròn (O; R) và (O’; R’) không có điểm chung;

⦁ OO’ > R + R’.

Do đó hai đường tròn (O) và (O’) ở ngoài nhau.

b) Ta có:

⦁ Hai đường tròn (O; R) và (O’; R’) có 1 điểm chung duy nhất;

⦁ OO’ = R + R’.

Do đó hai đường tròn (O) và (O’) tiếp xúc ngoài.

Quảng cáo

c) Ta có:

⦁ Hai đường tròn (O; R) và (O’; R’) không có điểm chung;

⦁ OO’ < R’ – R.

Do đó đường tròn (O’) đựng đường tròn (O).

d) Ta thấy hai đường tròn (O) và (O’) có 2 điểm chung nên hai đường tròn (O) và (O’) cắt nhau.

Bài 3 trang 100 Toán 9 Tập 1: Cho đoạn thẳng MN và đường thẳng a là đường trung trực của đoạn thẳng MN. Điểm O thuộc đường thẳng a.

a) Vẽ đường tròn tâm O bán kính R = OM.

b) Chứng minh điểm N thuộc đường tròn (O; R).

Lời giải:

a) Hình vẽ:

Quảng cáo

Bài 3 trang 100 Toán 9 Tập 1 Cánh diều | Giải Toán 9

b) Vì O nằm đường trung trực của đoạn thẳng MN nên OM = ON.

Mà OM = R (câu a) nên ON = R.

Vậy N thuộc đường tròn (O; R).

Bài 4 trang 100 Toán 9 Tập 1: Cho đường tròn (O; R) và dây AB = R. Tính số đo góc AOB.

Lời giải:

Bài 4 trang 100 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Quảng cáo

Vì AB là dây cung của đường tròn (O; R) nên OA = OB = R.

Mà AB = R nên OA = OB = AB = R.

Xét ∆OAB có OA = OB = AB = R nên ∆OAB là tam giác đều, suy raAOB^=60°.

Bài 5 trang 100 Toán 9 Tập 1: Chiếc đồng hồ trang trí ở Hình 18 gợi nên vị trí tương đối của các đường tròn.

Bài 5 trang 100 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Quan sát Hình 18 và chỉ ra một cặp đường tròn:

a) Cắt nhau;

b) Tiếp xúc ngoài;

c) Tiếp xúc trong;

d) Không giao nhau.

Lời giải:

a) Một cặp đường tròn cắt nhau: Đường tròn màu đỏ và đường tròn màu vàng (khung đồng hồ).

b) Một cặp đường tròn tiếp xúc ngoài: Đường tròn màu xanh lá và đường tròn màu cam.

c) Một cặp đường tròn tiếp xúc trong: Đường tròn màu xanh cổ vịt (mặt đồng hồ) và đường tròn màu vàng (khung đồng hồ).

d) Một cặp đường tròn không giao nhau: Đường tròn màu vàng và đường tròn màu tím (quả lắc).

Bài 6 trang 100 Toán 9 Tập 1: Cho đường tròn (O; R) và dây AB khác đường kính. Gọi M là trung điểm của AB.

a) Đường thẳng OM có phải là đường trung trực của đoạn thẳng AB hay không? Vì sao?

b) Tính khoảng cách từ điểm O đến đường thẳng AB, biết R = 5 cm, AB = 8 cm.

Lời giải:

Bài 6 trang 100 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Vì AB là dây cung của đường kính (O; R) nên ta có OA = OB = R.

Khi đó, O nằm trên đường trung trực của AB.

Lại có M là trung điểm của AB nên M cũng nằm trên đường trung trực của AB.

Do đó OM là đường trung trực của đoạn thẳng AB.

b) Vì M là trung điểm của AB nên ta có MA = MB = AB2=82 = 4 (cm).

Vì OM là đường trung trực của đoạn thẳng AB nên OM ⊥ AB hay ∆OAM vuông tại M.

Theo định lí Pythagore ta có: OA2 = OM2 + AM2

Suy ra OM2 = OA2 – AM2 = 52 – 42 = 9.

Do đó OM = 3 cm.

Vậy khoảng cách từ điểm O đến đường thẳng AB là 3 cm.

Bài 7 trang 100 Toán 9 Tập 1: Cho hai đường tròn cùng tâm (O; R), (O; r) với R > r. Các điểm A, B thuộc đường tròn (O; R), các điểm A’ B’ thuộc đường tròn (O; r) sao cho O, A, A’ thẳng hàng; O, B, B’ thẳng hàng và điểm O không thuộc đường thẳng AB. Chứng minh:

a) OA'OA=OB'OB;

b) AB // A’B’.

Lời giải:

Bài 7 trang 100 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Ta có: OA'OA=rR; OB'OB=rR, suy ra OA'OA=OB'OB.

b) Xét ∆OAB có OA'OA=OB'OB nên AB // A’B’ (theo định lí Thalès đảo).

Lời giải bài tập Toán 9 Bài 1: Đường tròn. Vị trí tương đối của hai đường tròn hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Cánh diều (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Cánh diều khác
Tài liệu giáo viên