Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Giải Toán 9 Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn - Kết nối tri thức

Thực hành trang 15 Toán 9 Tập 1: Dùng MTCT thích hợp để tìm nghiệm của các hệ phương trình sau:

Quảng cáo

a) 2x+3y=43x7y=13;

b) 2x+3y=1x1,5y=1;

c) 8x2y6=04xy3=0.

Lời giải:

a) Ta có a1 = 2, b1 = 3, c1 = –4, a2 = –3, b2 = –7, c2 = 13. Lần lượt thực hiện các bước sau (với máy tính thích hợp):

Bước 1. Vào chức năng giải hệ hai phương trình bậc nhất hai ẩn bằng cách bấm các phím Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9(xem màn hình sau bước 1, con trỏ ở vị trí a1).

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Bước 2. Nhập các số a1 = 2, b1 = 3, c1 = –4, a2 = –3, b2 = –7, c2 = 13 bằng cách bấm:

 Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9(xem màn hình sau bước 2).

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Bước 3. Đọc kết quả: Sau khi kết thúc bước 2, bấm Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9, màn hình cho x=115; bấm tiếp bàn phím Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9), màn hình cho y=145(xem màn hình sau bước 3).

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Vậy nghiệm của hệ phương trình đã cho là 115;145.

b) Ta có a1 = 2, b1 = 3, c1 = 1, a2 = –1, b2 = –1,5, c2 = 1. Lần lượt thực hiện các bước sau (với máy tính thích hợp):

Bước 1. Vào chức năng giải hệ hai phương trình bậc nhất hai ẩn bằng cách bấm các phím Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9(xem màn hình sau bước 1, con trỏ ở vị trí a1).

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Bước 2. Nhập các số a1 = 2, b1 = 3, c1 = 1, a2 = –1, b2 = –1,5, c2 = 1 bằng cách bấm:

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9(xem màn hình sau bước 2).

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Bước 3. Đọc kết quả: Sau khi kết thúc bước 2, bấm Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9(xem màn hình sau bước 3).

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Vậy hệ phương trình đã cho vô nghiệm.

c) Ta đưa hệ phương trình đã cho về dạng 8x2y=64xy=3.

Ta có a1 = 8, b1 = –2, c1 = 6, a2 = 4, b2 = –1, c2 = 3. Lần lượt thực hiện các bước sau (với máy tính thích hợp):

Bước 1. Vào chức năng giải hệ hai phương trình bậc nhất hai ẩn bằng cách bấm các phím Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9(xem màn hình sau bước 1, con trỏ ở vị trí a1).

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Bước 2. Nhập các số a1 = 8, b1 = –2, c1 = 6, a2 = 4, b2 = –1, c2 = 3 bằng cách bấm:

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9(xem màn hình sau bước 2).

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Bước 3. Đọc kết quả: Sau khi kết thúc bước 2, bấm Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9(xem màn hình sau bước 3).

Thực hành trang 15 Toán 9 Kết nối tri thức Tập 1 | Giải Toán 9

Vậy hệ phương trình đã cho có vô số nghiệm.

Quảng cáo

Lời giải bài tập Toán 9 Bài 2: Giải hệ hai phương trình bậc nhất hai ẩn hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sgk Toán 9 Tập 1 & Tập 2 của chúng tôi được biên soạn bám sát nội dung sgk Toán 9 Kết nối tri thức (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 9 Kết nối tri thức khác
Tài liệu giáo viên