Các dạng bài tập về hàm số bậc nhất và cách giải (hay, chi tiết)
Với loạt Các dạng bài tập về hàm số bậc nhất và cách giải sẽ giúp học sinh nắm vững lý thuyết, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán 10.
- Lý thuyêt bài tập về hàm số bậc nhất
- Các dạng bài tập về hàm số bậc nhất
- Bài tập tự luyện về hàm số bậc nhất
Các dạng bài tập về hàm số bậc nhất và cách giải
1. Lý thuyết:
a. Hàm số bậc nhất y = ax + b (a #0)
+) Tập xác định: D=R.
+) Sự biến thiên:
Với a > 0 hàm số đồng biến trên R. Ta có bảng biến thiên:
Với a < 0 hàm số nghịch biến trên . Ta có bảng biến thiên:
+) Đồ thị:
Đồ thị hàm số y = ax + b (a ≠ 0) là một đường thẳng không song song và cũng không trùng với các trục tọa độ. Đường thẳng này cắt trục tung tại điểm A(0; b) và cắt trục hoành tại điểm B.
b. Hàm số hằng y = b.
+) Tập xác định: D=R.
+) Đồ thị:
Khi a = 0 hàm số y = ax + b trở thành hàm hằng y = b.
Đồ thị hàm số y = b là đường thẳng song song hoặc trùng với trục hoành, cắt trục tung tại điểm A(0; b). Ta gọi đường thẳng này là đường thẳng y = b.
c. Hàm số y = |x|
+) Tập xác định: D=R.
+) Theo định nghĩa của giá trị tuyệt đối, ta có:
y= |x| =
+) Sự biến thiên:
Hàm số y = |x| nghịch biến trên khoảng (-;0) và đồng biến trên khoảng (0;+).
Bảng biến thiên:
+) Đồ thị:
Hàm số y = |x| là hàm số chẵn nên đồ thị của nó nhận Oy làm trục đối xứng.
Trong nửa khoảng [0;+] đồ thị hàm số y = |x| trùng với đồ thị hàm số y = x.
Trong khoảng (-;0) đồ thị hàm số y = |x| trùng với đồ thị hàm số y = -x.
2. Các dạng bài tập:
Dạng 2.1: Xác định hàm số y = ax + b (a#0).
a. Phương pháp giải:
Để xác định hàm số bậc nhất ta thực hiện theo các bước sau:
+) Giả sử hàm số cần tìm có dạng y = ax + b (a#0).
+) Dựa vào giả thiết bài toán để thiết lập hệ phương trình với ẩn a, b.
+) Giải hệ phương trình để tìm ẩn số a, b và suy ra hàm số cần tìm.
b. Ví dụ minh họa:
Ví dụ 1: Cho hàm số bậc nhất có đồ thị là đường thẳng d, tìm hàm số đó biết:
a. d đi qua điểm A(-2; 1) và B(1; -2).
b. d cắt trục tung tại điểm có tung độ là 3 và đi qua điểm M(-2; 4)
Hướng dẫn:
a. Giả sử hàm số bậc nhất cần tìm có dạng: y = ax + b .
Đồ thị hàm số đi qua điểm A(-2; 1) và B(1; -2) nên ta có:
Vậy hàm số cần tìm là: y= -x-1
b. Giả sử hàm số bậc nhất cần tìm có dạng: y = ax + b (a#0).
Vì d cắt trục tung tại điểm có tung độ là 3 nên d đi qua A(0; 3).
Đồ thị hàm số đi qua hai điểm A(0; 3) và M(-2; 4) nên ta có:
Vậy hàm số cần tìm là: y= .
Ví dụ 2: Cho hàm số bậc nhất y = f(x). Tìm hàm số đó biết f(-1) = 2 và f(2) = 3.
Hướng dẫn:
Giả sử hàm số bậc nhất cần tìm có dạng: y = f(x) = ax + b (a#0).
Theo đề bài, f(-1) = 2 và f(2) = -3 nên ta có hệ phương trình:
Vậy hàm số cần tìm là: y=
Dạng 2.2: Vị trí tương đối của hai đường thẳng.
a. Phương pháp giải:
Cho hai đường thẳng d: y = ax + b và d': y = a'x + b'. Khi đó:
+) d//d'a=a' và b#b'.
+) dd'a.a' = -1
+) dd' a=a' và b=b'
+) dd'a#a'. Khi đó tọa độ giao điểm của hai đường thẳng là nghiệm của hệ phương trình: .
b. Ví dụ minh họa:
Ví dụ 1: Xét hàm số bậc nhất có đồ thị là đường thẳng d, hãy xác định hàm số biết rằng:
a. d đi qua điểm A(3; -2), đồng thời song song với d’: 3x - 2y + 1 = 0.
b. d đi qua B(2; -1) và vuông góc với d’: y = 4x + 3.
Hướng dẫn:
a. Giả sử hàm số bậc nhất cần tìm có dạng: y = ax + b (a#0).
Ta biến đổi d’ về dạng: y =
Do d song song d’, suy ra: (1)
Lại có d đi qua điểm A(3; -2), suy ra: -2 = 3a + b (2)
Từ (1) và (2) suy ra:
Vậy hàm số cần tìm là: y=
b. Giả sử hàm số bậc nhất cần tìm có dạng: y = ax + b (a#0).
Do d đi qua điểm B(2; -1) nên: -1 = 2a + b (1)
Lại có d vuông góc d’: y = 4x + 3, suy ra: 4a = -1a= (2)
Từ (1) và (2) suy ra:
Vậy hàm số cầm tìm là: y =
Ví dụ 2: Cho hai đường thẳng d1 và d2 lần lượt có phương trình: mx + (m-1)y - 2 (m+2) = 0, 3mx - (3m+1)y - 5m -4 = 0. Xác định vị trí tương đối của d1 và d2 trong trường hợp m= .
Hướng dẫn:
Khi m= ta có d1: =0y= x-7;
d2: x - 2y -=0y = x-
Ta có:=và -7#suy ra hai đường thẳng song song với nhau.
Dạng 2.3: Hàm số chứa dấu giá trị tuyệt đối.
a. Phương pháp giải:
Cho hàm số |ax + b| (a#0), ta có: y = |ax + b| =
Do đó, để vẽ đồ thị của hàm số y = |ax + b| ta sẽ vẽ hai đường thẳng y=ax+b và y=-ax-b, rồi xóa đi phần đường thẳng nằm ở phía dưới trục hoành. Phần đường thẳng nằm phía trên trục hoành chính là đồ thị của hàm số cần tìm.
b. Ví dụ minh họa:
Ví dụ 1: Vẽ đồ thị của các hàm số sau
a. y =
b. y = |x-1|
Hướng dẫn:
a. Đồ thị hàm số y = 2x là đường thẳng đi qua hai điểm A(1; 2) và .
Đồ thị hàm số y = x + 1 là đường thẳng đi qua hai điểm C(0; 1) và D(-1; 0).
Ta vẽ đường thẳng y = 2x với phần đồ thị sao cho hoành độ x thỏa mãn x1 và vẽ đường thẳng y = x + 1 với phần đồ thị sao cho hoành độ x thỏa mãn x < 1.
b. Ta có: y = |x - 1| =
Với x1 đồ thị hàm số y = x - 1 là phần đường thẳng nằm phía trên trục hoành và đi qua hai điểm (1; 0); (2; 1).
Với x<1 đồ thị hàm số y = -x + 1 là phần đường thẳng nằm phía trên trục hoành và đi qua hai điểm (1; 0); (0; 1).
Ví dụ 2: Cho hàm số y = f(x) = |x + 5|. Tìm giá trị của x để f(x) = 2.
Hướng dẫn:
Ta có: f(x) = 2|x + 5| = 2
Vậy với x = -3 hoặc x = -7 thì f(x) = 2.
3. Bài tập tự luyện:
a. Tự luận:
Câu 1: Lập phương trình đường thẳng đi qua hai điểm A(-1;2) và B(3;1).
Hướng dẫn:
Giả sử phương trình đường thẳng cần tìm có dạng: y = ax + b (a#0).
Đường thẳng đi qua hai điểm A(-1;2), B(3;1) nên ta có: .
Vậy phương trình đường thẳng cần tìm là: y =.
Câu 2: Tìm m để hàm số y = (3-m)x + 2 nghịch biến trên R.
Hướng dẫn:
Hàm số y = (3-m)x + 2 có dạng hàm số bậc nhất.
Để hàm số nghịch biến trên R thì 3-m<0m>3.
Câu 3: Tìm m để hàm số y = (m-1)x - đồng biến trên R
Hướng dẫn:
Điều kiện xác định của hàm số là 2 - m0m2 (*).
Hàm số y = (m-1)x -có dạng hàm số bậc nhất nên hàm số đồng biến trên R khi m -1 > 0 m>1. Kết hợp với điều kiện (*), ta được 1<m2
Vậy với 1<m2 thì hàm số đã cho đồng biến trên R
Câu 4: Tìm tất cả các giá trị của m để hai đường thẳng y = -3x + 2 và y = (m2-4)x -2m song song với nhau?
Hướng dẫn:
Hai đường thẳng y = -3x + 2 và y = (m2-4)x -2m song song với nhau
Câu 5: Tìm tọa độ giao điểm của hai đường thẳng y = x + 2 và y =x + 3?
Hướng dẫn:
Phương trình hoành độ giao điểm của hai đường thẳng là:
x + 2 =x + 3 x =
Thay x = vào y = x + 2 suy ra y = .
Vậy tọa độ giao điểm của hai đường thẳng là .
Câu 6: Tìm m để ba đường thẳng d1 : y = 2x - 1, d2 : y = 8 - x, d3: y = (3-2m)x + 2, đồng quy.
Hướng dẫn:
Gọi A là giao điểm của hai đường thẳng d1 và d2. Khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Suy ra A(3;5).
Để d1, d2 , d3 đồng quy thì A(3;5)d3. Do đó, ta có:
(3-2m).3 + 2 = 5 m = 1.
Câu 7: Đồ thị hàm số y = 3x + 2 cắt hai trục Ox, Oy lần lượt tại hai điểm A và B. Tính diện tích tam giác OAB.
Hướng dẫn:
Giao điểm của đồ thị hàm số với trục Ox là:. Do đó OA =
Giao điểm của đồ thị hàm số với trục Oy là: B(0;2). Do đó OB = 2.
Diện tích tam giác OAB là: OA.OB = . .2 = .
Câu 8: Cho hàm số y = x - |x|. Trên đồ thị của hàm số lấy hai điểm A và B có hoành độ lần lượt là -2 và 1. Hãy xác định phương trình đường thẳng AB.
Hướng dẫn:
Khi x = -2y = -2 - |-2| = -4 A(-2;-4).
Khi x = 1y = 1 - |1| = 0 B(1;0).
Phương trình đường thẳng AB có dạng: y = ax + b (a#0).
A(-2;-4)AB -4 = -2a + bb = 2a - 4 (1)
B(1;0)AB 0 = a + b (2)
Từ (1) và (2) suy ra 0 = 3a - 4a = b =
Vậy phương trình đường thẳng AB là: y = .
Câu 9: Vẽ đồ thị hàm số y = |x - 5|
Hướng dẫn:
y = |x - 5| =
Suy ra đồ thị hàm số là sự kết hợp giữa đồ thị hàm số y = x -5 (ứng với phần đồ thị khi x5 ) và đồ thị hàm số y = -x + 5 (ứng với phần đồ thị khi x<5 ).
Câu 10:Đồ thị sau đây biểu diễn hàm số nào?
Hướng dẫn:
Giả sử hàm số cần tìm có dạng: y = ax + b (a#0).
Đồ thị hàm số đi qua hai điểm (1;0), (0;-2) nên ta có:
Vậy hàm số cần tìm là: y = 2x - 2.
b. Trắc nghiệm:
Câu 1: Cho hàm số y = ax + b (a#0). Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến khi a>0.
B. Hàm số đồng biến khi a<0.
C. Hàm số đồng biến khi x>.
D. Hàm số đồng biến khi x<
Hướng dẫn:
Chọn A.
Hàm số bậc nhất y = ax + b (a#0) đồng biến khi a>0.
Câu 2: Đồ thị của hàm số y = + 2 là hình nào dưới đây?
A.
B.
C.
D.
Hướng dẫn:
Chọn A.
ChoĐồ thị hàm số đi qua hai điểm (0;2), (4;0).
Câu 3: Trong các hàm số sau, hàm số nào nghịch biến trên R
A. y =x - 2.
B. y = 2
C. y = x+3.
D. y = 2x + 3.
Hướng dẫn:
Chọn C.
Chỉ có hàm số y=x + 3 có hệ số a = <0 nên hàm số nghịch biến trên R.
Câu 4: Cho hai đường thẳng d: y = (m2 - 3m)x + 3 và d': y = -2x + m + 1 . Có bao nhiêu giá trị của tham số m để hai đường thẳng song song với nhau?
A. 0.
B. 1.
C. 2.
D. Vô số.
Hướng dẫn:
Chọn B.
(d) // (d’) khi và chỉ khi
Vậy có 1 giá trị của tham số m để hai đường thẳng song song với nhau.
Câu 5: Cho hai đường thẳng d1 : y =x + 100 và d2 : y = -x + 100. Mệnh đề nào sau đây đúng?
A. d1 và d2 trùng nhau.
B. d1 và d2 cắt nhau và không vuông góc.
C. d1 và d2 song song với nhau.
D. d1 và d2 vuông góc với nhau.
Hướng dẫn:
Chọn B.
Ta có: suy ra hai đường thẳng cắt nhau.
Do#-1nên hai đường thẳng không vuông góc.
Câu 6: Phương trình đường thẳng đi qua hai điểm A(5; 2) và B(-3; 2) là:
A. y = 5.
B. y = -3.
C. y = 5x + 2.
D. y = 2.
Hướng dẫn:
Chọn D.
Giả sử phương trình đường thẳng có dạng: y = ax + b (a#0).
Đường thẳng đi qua hai điểm A(5; 2) và B(-3; 2) nên ta có:.
Vậy phương trình đường thẳng cần tìm là: y = 2.
Câu 7: Đồ thị hàm số nào sau đây song song với trục hoành?
A. y = 4x - 1.
B. y = 5 - 2x.
C. y = -2.
D. x = 2.
Hướng dẫn:
Chọn C.
y = -2 là hàm hằng, đồ thị có tính chất song song với trục hoành.
Câu 8: Hàm số y = |x + 2| - 4x bằng hàm số nào sau đây?
Hướng dẫn:
Chọn D.
y = |x + 2| - 4x =
Câu 9: Hàm số y = x + |x| bằng hàm số nào dưới đây?
Hướng dẫn:
Chọn C.
y = x + |x| =
Câu 10: Cho hàm số có đồ thị là hình dưới đây. Giá trị của a và b là:
A. a = -2 và b = 3.
B. a = và b = 2.
C. a = -3 và b = 3.
D. a = và b = 3.
Hướng dẫn :
Chọn D.
Đồ thị hàm số đi qua hai điểm (-2;0), (0;3) nên ta có:
Xem thêm phương pháp giải các dạng bài tập Toán lớp 10 hay, chi tiết khác:
- Các dạng bài tập về hàm số bậc hai và cách giải
- Đại cương về phương trình và cách giải
- Phương trình quy về phương trình bậc hai và cách giải
- Phương trình chứa ẩn dưới dấu căn và cách giải
- Các dạng toán về hệ phương trình và cách giải
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều