Lý thuyết tổng hợp chương Tích vô hướng của hai vectơ và ứng dụng lớp 10 (hay, chi tiết)
Bài viết Lý thuyết tổng hợp chương Tích vô hướng của hai vectơ và ứng dụng lớp 10 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết tổng hợp chương Tích vô hướng của hai vectơ và ứng dụng.
Lý thuyết tổng hợp chương Tích vô hướng của hai vectơ và ứng dụng
Giá trị lượng giác của một góc bất kì từ 0o đến 180o
1. Tính chất
Trên hình bên ta có dây cung NM song song với trục Ox và nếu ∠ xOM = α thì ∠xON = 180o – α. Ta có yM = yN = yo, xM = –xN = xo. Do đó
sin α = sin(180o – α)
cos α = –cos(180o – α)
tan α = –tan(180o – α)
cot α = –cot(180o – α)
2. Giá trị lượng giác của các góc đặc biệt
Trong bảng kí hiệu “||” để chỉ giá trị lượng giác không xác định.
Chú ý. Từ giá trị lượng giác của các góc đặc biệt đã cho trong bảng và tính chất trên, ta có thể suy ra giá trị lượng giác của một số góc đặc biệt khác.
Chẳng hạn:
sin 120o = sin(180o – 60o) = sin60o =
cos 135o = cos(180o – 45o) = –cos45o = -
3. Góc giữa hai vectơ
a) Định nghĩa
Cho hai vectơ đều khác vectơ 0 .Từ một điểm O bất kì ta vẽ Góc ∠AOB với số đo từ 0o đến 180o được gọi là góc giữa hai vectơ . Ta kí hiệu góc giữa hai vectơ là
Nếu ( ) = 90o thì ta nói rằng vuông góc với nhau, kí hiệu là
b) Chú ý. Từ định nghĩa ta có .
1. Định nghĩa
Cho hai vectơ và đều khác vectơ . Tích vô hướng của và là một số, kí hiệu là . được xác định bởi công thức sau:
Trường hợp ít nhất một trong hai vectơ và bằng vectơ
ta quy ước:
Chú ý
+) Với và khác vectơ ta có:
+) Khi = tích vô hướng được kí hiệu là và số này được gọi là bình phương vô hướng của vectơ
Ta có:
2. Các tính chất của tích vô hướng
Người ta chứng minh được các tính chất sau đây của tích vô hướng:
Nhận xét. Từ các tính chất của tích vô hướng của hai vectơ ta suy ra:
3. Biểu thức tọa độ của tích vô hướng
Trên mặt phẳng tọa độ , cho hai vectơ:
Khi đó tích vô hướng .
Nhận xét. Hai vectơ:
đều khác vectơ vuông góc với nhau khi và chỉ khi: a1b1 + a2b2 = 0.
4. Ứng dụng
a) Độ dài của vectơ
Độ dài của vectơ = (a1, a2), được tính theo công thức:
b) Góc giữa hai vectơ
Từ định nghĩa tích vô hướng của hai vectơ ta suy ra nếu = (a1, a2) và = (b1, b2) đều khác thì ta có:
c) Khoảng cách giữa hai điểm
Khoảng cách giữa hai điểm A(xA; yA) và B(xB; yB) được tính theo công thức:
1. Định lí côsin
Cho tam giác ABC có BC = a, AC = b và AB = c
Ta có
a2 = b2 + c2 – 2bc.cosA;
b2 = c2 + a2 – 2ca.cosB;
c2 = a2 + b2 – 2ab.cosC.
Hệ quả
2. Định lí sin
Cho tam giác ABC có BC = a, AC = b, AB = c và R là bán kính đường tròn ngoại tiếp.
Ta có
3. Độ dài đường trung tuyến
Cho tam giác ABC có ma, mb, mc lần lượt là các trung tuyến kẻ từ A, B, C.
Ta có
4. Công thức tính diện tích tam giác
Cho tam giác ABC có
+) ha, hb, hc là độ dài đường cao lần lượt tương ứng với các cạnh BC, CA, AB;
+) R là bán kính đường tròn ngoại tiếp tam giác;
+) r là bán kính đường tròn nội tiếp tam giác;
+) p = là nửa chu vi tam giác;
+) S là diện tích tam giác.
Khi đó ta có:
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Lý thuyết Giá trị lượng giác của một góc bất kì từ 0o đến 180o
- Lý thuyết Tích vô hướng của hai vectơ
- Lý thuyết Các hệ thức lượng trong tam giác và giải tam giác
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều