Các dạng bài tập Tích vô hướng của hai vectơ chọn lọc có lời giải



Các dạng bài tập Tích vô hướng của hai vectơ chọn lọc có lời giải

Bài giảng: Bài 1: Giá trị lượng giác của một góc bất kì từ 0o đến 180o - Thầy Lê Thành Đạt (Giáo viên VietJack)

Phần dưới là Chuyên đề tổng hợp Lý thuyết và Bài tập Toán 10 Đại số Chương 2: Tích vô hướng của hai vectơ và ứng dụng có đáp án. Bạn vào tên bài hoặc Xem chi tiết để theo dõi các chuyên đề Toán lớp 10 Đại số tương ứng.

Tổng hợp lý thuyết chương Tích vô hướng của hai vectơ và ứng dụng

Các dạng bài tập chương Tích vô hướng và ứng dụng

Cách chứng minh Hai vecto vuông góc

A. Phương pháp giải

Phương pháp 1: Sử dụng định nghĩa

Nếu Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10 thì hai vectơ Công thức, cách tính góc giữa hai vecto cực hay, chi tiết - Toán lớp 10 vuông góc với nhau, kí hiệu Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10.

Phương pháp 2: Sử dụng tính chất của tích vô hướng và áp dụng trong hệ tọa độ

Cho Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10.

Khi đó:

Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10

B. Ví dụ minh họa

Ví dụ 1: Cho hai vectơ Công thức, cách tính góc giữa hai vecto cực hay, chi tiết - Toán lớp 10 vuông góc với nhau và Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10. Chứng minh hai vectơ Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10 vuông góc với nhau.

Hướng dẫn giải:

Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10

Ví dụ 2: Cho tứ giác ABCD có Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10. Chứng minh hai vectơ Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10 vuông góc.

Hướng dẫn giải:

Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10

Ví dụ 3: Cho tam giác ABC vuông tại A có AB = a, AC = 2a. Gọi M là trung điểm của BC và điểm D bất kỳ thuộc cạnh AC. Tính AD theo a để BD ⊥ AM.

Hướng dẫn giải:

Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10

Cách chứng minh Hai vecto vuông góc cực hay, chi tiết - Toán lớp 10

Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù)

A. Phương pháp giải

Các bước làm bài

Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10

B. Ví dụ minh họa

Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho hai vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10 = (3;m) và Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10 = (1;7). Xác định m để góc giữa hai vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10 là 45°.

Hướng dẫn giải:

Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10

Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10

Ví dụ 2: Trong mặt phẳng tọa độ Oxy, cho hai vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10 = (-1;1) và Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10 = (m;⁡2). Tìm m để góc giữa hai vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10 là 135°.

Hướng dẫn giải:

Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10

Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10

Vậy không tồn tại m để góc giữa hai vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10 là 135°.

Ví dụ 3: Trong mặt phẳng tọa độ Oxy cho hai vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10 = (4;1) và vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10 = (1;4). Tìm m để vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10=m.Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10 + Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết - Toán lớp 10 tạo với vectơ Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10 một góc 45°.

Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10

Hướng dẫn giải:

Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10

Tìm m để góc giữa hai vecto bằng một số cho trước (45 độ, góc nhọn, góc tù) cực hay - Toán lớp 10

Đáp án C

Công thức, cách tính độ dài đường trung tuyến

A. Phương pháp giải

Áp dụng công thức tính độ dài đường trung tuyến:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Cho tam giác ABC có các cạnh BC = a, CA = b và AB = c. Gọi ma; mb; mc là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh A, B và C của tam giác. Khi đó

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

B. Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC có BC = a = 10 cm, CA = b = 8 cm, AB = c = 7 cm. Tính độ dài các đường trung tuyến của tam giác ABC.

Hướng dẫn giải:

Gọi độ dài trung tuyến từ các đỉnh A, B, C của tam giác ABC lần lượt là ma; mb; mc.

Áp dụng công thức trung tuyến ta có:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Vì độ dài các đường trung tuyến (là độ dài đoạn thẳng) nên nó luôn dương, do đó:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Ví dụ 2: Cho tam giác ABC, có BC = a, CA = b và AB = c. Chứng minh rằng nếu b2 + c2 = 5a2 thì hai trung tuyến kẻ từ B và C của tam giác vuông góc với nhau.

Hướng dẫn giải:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Gọi D và E lần lượt là trung điểm của AB và AC, G là trọng tâm tam giác ABC.

Đặt BE = mb, CD = mc

Áp dụng công thức trung tuyến trong tam giác ABC ta có:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Vậy b2 + c2 = 5a2 thì hai trung tuyến kẻ từ B và C của tam giác vuông góc với nhau. (đpcm)

Ví dụ 3: Cho tam giác ABC có AB = 3, BC = 5 và độ dài đường trung tuyến Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10. Độ dài AC là:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Hướng dẫn giải:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

BM là trung tuyến của tam giác ABC, áp dụng công thức trung tuyến ta có:

Công thức, cách tính độ dài đường trung tuyến cực hay, chi tiết - Toán lớp 10

Đáp án B

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có lời giải hay khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 10 tại khoahoc.vietjack.com

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 199K cho teen 2k5 tại khoahoc.vietjack.com

Toán lớp 10 - Thầy Phạm Như Toàn

4.5 (243)

799,000đs

399,000 VNĐ

Vật Lý 10 - Thầy Quách Duy Trường

4.5 (243)

799,000đ

399,000 VNĐ

Tiếng Anh lớp 10 - Thầy Quang Hưng

4.5 (243)

799,000đ

399,000 VNĐ

Hóa Học lớp 10 - Cô Nguyễn Thị Thu

4.5 (243)

799,000đs

399,000 VNĐ

Hóa học lớp 10 - cô Trần Thanh Thủy

4.5 (243)

799,000đ

399,000 VNĐ

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k5: fb.com/groups/hoctap2k5/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Nhóm hỏi bài 2k6