Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)
Bài viết Công thức, cách tính Diện tích tam giác với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Công thức, cách tính Diện tích tam giác.
Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)
1. Phương pháp giải
Dựa vào dữ kiện bài ra để sử dụng linh hoạt một trong các công thức dưới đây.
Cho tam giác ABC có BC = a, CA = b và AB = c, gọi ha, hb, hc là độ dài các đường cao lần lượt ứng với các cạnh BC, CA, AB; R và r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp tam giác;
2. Bài tập tự luyện
Ví dụ minh họa hoặc bài tập có giải
Ví dụ 1: Cho tam giác ABC có AC = 3, AB = 5, cosA = .
a, Tính diện tích tam giác ABC.
b, Tính đường cao ha của tam giác ABC.
Hướng dẫn giải:
Áp dụng công thức tính diện tích tam giác, ta có diện tích tam giác ABC là:
Áp dụng công thức tính diện tích tam giác ABC ta lại có:
Ví dụ 2: Cho tam giác ABC có và cạnh AC = 4. Tính các cạnh còn lại, diện tích tam giác ABC và đường cao hạ từ đỉnh B.
Hướng dẫn giải:
Ví dụ 3: Cho tam giác ABC ngoại tiếp đường tròn tâm O, bán kính r = 5cm. Tính diện tích tam giác ABC biết các cạnh BC = 7cm, CA = 8cm, AB = 10cm.
Hướng dẫn giải:
+ Nửa chu vi tam giác ABC là:
+ Tam giác ABC ngoại tiếp đường tròn tâm O bán kính r = 5cm, nên r là bán kính đường tròn nội tiếp tam giác ABC, áp dụng công thức tính diện tích, ta có diện tích tam giác ABC là:
Ví dụ 4: Cho tam giác ABC có các đỉnh A(1; -2), B(-2; 3), C(0; 4). Tính diện tích tam giác ABC.
Hướng dẫn giải:
Đáp án A
Ví dụ 5: Cho tam giác ABC vuông tại A có AC = 15 và AB = 8. Diện tích, chu vi và đường cao hạ từ A của tam giác ABC lần lượt là.
Hướng dẫn giải:
+ Tam giác ABC vuông tại A
Do đó diện tích tam giác ABC là:
+ Ta có: BC2 = AB2 + AC2 (theo định lý Pytago trong tam giác vuông ABC)
Suy ra:
Chu vi tam giác ABC là: C = AB + AC + BC = 8 + 15 + 17 = 40
+ Lại có diện tích tam giác ABC là
S = (với ha là độ dài đường cao hạ từ A)
Đáp án B
Bài tập tự luyện
Bài 1. Tam giác ABC có AB = 2, AC = 5, . Tính diện tích tam giác ABC.
Bài 2. Tam giác ABC có AB = 21, AC = 17, BC = 10. Tính diện tích của tam giác ABC.
Bài 3. Tính diện tích tam giác đều nội tiếp đường tròn bán kính R = 6 cm.
Bài 4. Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C. Tính diện tích của tam giác mới được tạo thành.
Bài 5. Tam giác ABC có BC = a và AC = b. Tìm giá trị góc C để diện tích tam giác ABC là lớn nhất.
Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:
- Bài tập Công thức Heron tính diện tích tam giác (cực hay, chi tiết)
- Cách làm bài tập Giải tam giác lớp 10 (cực hay, chi tiết)
- Cách tính bán kính đường tròn ngoại tiếp tam giác (cực hay, chi tiết)
- Cách tính bán kính đường tròn nội tiếp tam giác (cực hay, chi tiết)
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều