Những hằng đẳng thức đáng nhớ đầy đủ, chi tiết
Bài viết Những hằng đẳng thức đáng nhớ lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Những hằng đẳng thức đáng nhớ.
Những hằng đẳng thức đáng nhớ đầy đủ, chi tiết
Bài giảng: Bài 3: Những hằng đẳng thức đáng nhớ - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
A. Lý thuyết
1. Bình phương của một tổng
Với A, B là các biểu thức tùy ý, ta có: ( A + B )2 = A2 + 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.
b) Viết biểu thức x2 + 4x + 4 dưới dạng bình phương của một tổng.
Lời giải:
a) Ta có: ( a + 3 )2 = a2 + 2.a.3 + 32 = a2 + 6a + 9.
b) Ta có x2 + 4x + 4 = x2 + 2.x.2 + 22 = ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là các biểu thức tùy ý, ta có: ( A - B )2 = A2 - 2AB + B2.
Ví dụ:
a) Tính ( 5x -y )2
b) Viết biểu thức 4x2 - 4x + 1 dưới dạng bình phương của một hiệu
Lời giải:
a) Ta có ( 5x -y )2 = ( 5x )2 - 2.5x.y + ( y )2 = 25x2 - 10xy + y2.
b) Ta có 4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 1 = ( 2x - 1 )2.
3. Hiệu hai bình phương
Với A, B là các biểu thức tùy ý, ta có: A2 - B2 = ( A - B )( A + B ).
Ví dụ:
a) Tính ( x - 2 )( x + 2 ).
b) Tính 56.64
Lời giải:
a) Ta có: ( x - 2 )( x + 2 ) = ( x )2 - 22 = x2 - 4.
b) Ta có: 56.64 = ( 60 - 4 )( 60 + 4 ) = 602 - 42 = 3600 - 16 = 3584.
4. Lập phương của một tổng
Với A, B là các biểu thức tùy ý, ta có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.
Ví dụ:
a) Tính ( x + 2 )3.
b) Viết biểu thức x3 + 3x2 + 3x + 1 dưới dạng lập phương của một tổng.
Lời giải:
a) Ta có ( x + 2 )3 = x3 + 3.x2.2 + 3x.22 + 23 = x3 + 6x2 + 12x + 8.
b) Ta có x3 + 3x2 + 3x + 1 = x3 + 3x2.1 + 3x.12 + 13 = ( x + 1 )3.
5. Lập phương của một hiệu.
Với A, B là các biểu thức tùy ý, ta có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.
Ví dụ :
a) Tính ( 2x - 1 )3.
b) Viết biểu thức x3 - 6x2y + 12xy2 - 8y3 dưới dạng lập phương của một hiệu.
Lời giải:
a) Ta có: ( 2x - 1 )3 = ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13 = 8x3 - 12x2 + 6x - 1
b) Ta có : x3 - 6x2y + 12xy2 - 8y3 = ( x )3 - 3.x2.2y + 3.x.( 2y )2 - ( 2y )3 = ( x - 2y )3
6. Tổng hai lập phương
Với A, B là các biểu thức tùy ý, ta có: A3 + B3 = ( A + B )( A2 - AB + B2 ).
Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu của hiệu A - B.
Ví dụ:
a) Tính 33 + 43.
b) Viết biểu thức ( x + 1 )( x2 - x + 1 ) dưới dạng tổng hai lập phương.
Lời giải:
a) Ta có: 33 + 43 = ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2 - x + 1 ) = x3 + 13 = x3 + 1.
7. Hiệu hai lập phương
Với A, B là các biểu thức tùy ý, ta có: A3 - B3 = ( A - B )( A2 + AB + B2 ).
Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu của tổng A + B.
Ví dụ:
a) Tính 63 - 43.
b) Viết biểu thức ( x - 2y )( x2 + 2xy + 4y2 ) dưới dạng hiệu hai lập phương
Lời giải:
a) Ta có: 63 - 43 = ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.
b) Ta có : ( x - 2y )( x2 + 2xy + 4y2 ) = ( x )3 - ( 2y )3 = x3 - 8y3.
B. Bài tập tự luyện
Bài 1: Tính giá trị của các biểu thức sau:
Lời giải:
a) Ta có:
(áp dụng hằng đẳng thức a2 - b2 = ( a + b )( a - b ) )
Vậy A = 25/47.
b) Ta có
(áp dụng hằng đẳng thức ( a + b )2 = a2 + 2ab + b2; ( a - b )2 = a2 - 2ab + b2 )
Vậy B = 1.
Bài 2: Tìm x biết
a) ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
b) ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
Lời giải:
a) Áp dụng các hằng đẳng thức ( a - b )( a2 + ab + b2 ) = a3 - b3.
( a - b )( a + b ) = a2 - b2.
Khi đó ta có ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0
⇔ x3 - x3 + 4x - 27 = 0
⇔ 4x - 27 = 0 ⇔ x = 27/4.
Vậy giá trị x cần tìm là x= 27/4 .
b) Áp dụng hằng đẳng thức ( a - b )3 = a3 - 3a2b + 3ab2 - b3
( a + b )3 = a3 + 3a2b + 3ab2 + b3
( a - b )2 = a2 - 2ab + b2
Khi đó ta có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10
⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10
⇔ 12x = - 6 ⇔ x = - 1/2.
Vậy giá trị x cần tìm là x= - 1/2
Bài giảng: Bài 4: Những hằng đẳng thức đáng nhớ (tiếp) - Cô Vương Thị Hạnh (Giáo viên VietJack)
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Bài tập Những hằng đẳng thức đáng nhớ
- Lý thuyết Những hằng đẳng thức đáng nhớ
- Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp)
- Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp)
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều