Lý thuyết và Bài tập Toán 8 Bài 3, 4, 5: Những hằng đẳng thức đáng nhớ có đáp án

Lý thuyết và Bài tập Toán 8 Bài 3, 4, 5: Những hằng đẳng thức đáng nhớ có đáp án

A. Lý thuyết

1. Bình phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )2 = A2 + 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.

b) Viết biểu thức x2 + 4x + 4 dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2 = a2 + 2.a.3 + 32 = a2 + 6a + 9.

b) Ta có x2 + 4x + 4 = x2 + 2.x.2 + 22 = ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là các biểu thức tùy ý, ta có: ( A - B )2 = A2 - 2AB + B2.

Ví dụ:

a) Tính ( 5x -y )2

b) Viết biểu thức 4x2 - 4x + 1 dưới dạng bình phương của một hiệu

Hướng dẫn:

a) Ta có ( 5x -y )2 = ( 5x )2 - 2.5x.y + ( y )2 = 25x2 - 10xy + y2.

b) Ta có 4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 1 = ( 2x - 1 )2.

3. Hiệu hai bình phương

Với A, B là các biểu thức tùy ý, ta có: A2 - B2 = ( A - B )( A + B ).

Ví dụ:

a) Tính ( x - 2 )( x + 2 ).

b) Tính 56.64

Hướng dẫn:

a) Ta có: ( x - 2 )( x + 2 ) = ( x )2 - 22 = x2 - 4.

b) Ta có: 56.64 = ( 60 - 4 )( 60 + 4 ) = 602 - 42 = 3600 - 16 = 3584.

4. Lập phương của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.

Ví dụ:

a) Tính ( x + 2 )3.

b) Viết biểu thức x3 + 3x2 + 3x + 1 dưới dạng lập phương của một tổng.

Hướng dẫn:

a) Ta có ( x + 2 )3 = x3 + 3.x2.2 + 3x.22 + 23 = x3 + 6x2 + 12x + 8.

b) Ta có x3 + 3x2 + 3x + 1 = x3 + 3x2.1 + 3x.12 + 13 = ( x + 1 )3.

5. Lập phương của một hiệu.

Với A, B là các biểu thức tùy ý, ta có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.

Ví dụ :

a) Tính ( 2x - 1 )3.

b) Viết biểu thức x3 - 6x2y + 12xy2 - 8y3 dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3 = ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13 = 8x3 - 12x2 + 6x - 1

b) Ta có : x3 - 6x2y + 12xy2 - 8y3 = ( x )3 - 3.x2.2y + 3.x.( 2y )2 - ( 2y )3 = ( x - 2y )3

6. Tổng hai lập phương

Với A, B là các biểu thức tùy ý, ta có: A3 + B3 = ( A + B )( A2 - AB + B2 ).

Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu của hiệu A - B.

Ví dụ:

a) Tính 33 + 43.

b) Viết biểu thức ( x + 1 )( x2 - x + 1 ) dưới dạng tổng hai lập phương.

Hướng dẫn:

a) Ta có: 33 + 43 = ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.

b) Ta có: ( x + 1 )( x2 - x + 1 ) = x3 + 13 = x3 + 1.

7. Hiệu hai lập phương

Với A, B là các biểu thức tùy ý, ta có: A3 - B3 = ( A - B )( A2 + AB + B2 ).

Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu của hiệu A + B.

Ví dụ:

a) Tính 63 - 43.

b) Viết biểu thức ( x - 2y )( x2 + 2xy + 4y2 ) dưới dạng hiệu hai lập phương

Hướng dẫn:

a) Ta có: 63 - 43 = ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.

b) Ta có : ( x - 2y )( x2 + 2xy + 4y2 ) = ( x )3 - ( 2y )3 = x3 - 8y3.

B. Trắc nghiệm & Tự luận

I. Bài tập trắc nghiệm

Bài 1: Điền vào chỗ trống: A = ( 1/2x - y )2 = 1/4x2 - ... + y2

   A. 2xy   B. xy

   C. - 2xy   D. 1/2 xy

Áp dụng hằng đẳng thức ( a + b )2 = a2 + 2ab + b2.

Khi đó ta có A = ( 1/2x - y )2 = 1/4x2 - 2.1/2x.y + y2 = 1/4x2 - xy + y2.

Suy ra chỗ trống cần điền là xy.

Chọn đáp án B.

Bài 2: Điều vào chỗ trống: ... = ( 2x - 1 )( 4x2 + 2x + 1 ).

   A. 1 - 8x3.

   B. 1 - 4x3.

   C. x3 - 8.

   D. 8x3 - 1.

Áp dụng hằng đẳng thức a3 - b3 = ( a - b )( a2 + ab + b2 )

Khi đó ta có ( 2x - 1 )( 4x2 + 2x + 1 ) = ( 2x - 1 )[ ( 2x )2 + 2x.1 + 1 ] = ( 2x )3 - 1 = 8x3 - 1.

Suy ra chỗ trống cần điền là 8x3 - 1.

Chọn đáp án D.

Bài 3: Tính giá trị cuả biểu thức A = 8x3 + 12x2y + 6xy2 + y3 tại x = 2 và y = -1.

   A. 1   B. 8

   C. 27   D. -1

Áp dụng hằng đẳng thức ( a + b )3 = a3 + 3a2b + 3ab2 + b3.

Khi đó ta có:

A = 8x3 + 12x2y + 6xy2 + y3 = ( 2x )3 + 3.( 2x )2.y + 3.( 2x ).y2 + y3 = ( 2x + y )3

Với x = 2 và y = -1 ta có A = ( 2.2 - 1 )3 = 33 = 27.

Chọn đáp án C.

Bài 4: Tính giá trị của biểu thức A = 352 - 700 + 102.

   A. 252.   B. 152.

   C. 452.   D. 202.

Ta có A = 352 - 700 + 102 = 352 - 2.35.10 + 102

Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2.

Khi đó A = ( 35 - 10 )2 = 252.

Chọn đáp án A.

Bài 5: Giá trị của x thỏa mãn 2x2 - 4x + 2 = 0 là ?

   A. x = 1.   B. x = - 1.

   C. x = 2.   D. x = - 2.

Ta có 2x2 - 4x + 2 = 0 ⇔ 2( x2 - 2x + 1 ) = 0        ( 1 )

Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2

Khi đó ta có ( 1 ) ⇔ 2( x - 1 )2 = 0 ⇔ x - 1 = 0 ⇔ x = 1.

Chọn đáp án A.

II. Bài tập tự luận

Bài 1: Tính giá trị của các biểu thức sau:

Bài tập: Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án Bài tập: Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Hướng dẫn:

a) Ta có: Bài tập: Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

(áp dụng hằng đẳng thức a2 - b2 = ( a + b )( a - b ) )

Vậy A = 25/47.

b) Ta có Bài tập: Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Những hằng đẳng thức đáng nhớ | Lý thuyết và Bài tập Toán 8 có đáp án

(áp dụng hằng đẳng thức ( a + b )2 = a2 + 2ab + b2; ( a - b )2 = a2 - 2ab + b2 )

Vậy B = 1.

Bài 2: Tìm x biết

a) ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

b) ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.

Hướng dẫn:

a) Áp dụng các hằng đẳng thức ( a - b )( a2 + ab + b2 ) = a3 - b3.

( a - b )( a + b ) = a2 - b2.

Khi đó ta có ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0

⇔ x3 - x3 + 4x - 27 = 0

⇔ 4x - 27 = 0 ⇔ x = 27/4.

Vậy giá trị x cần tìm là x= 27/4 .

b) Áp dụng hằng đẳng thức ( a - b )3 = a3 - 3a2b + 3ab2 - b3

( a + b )3 = a3 + 3a2b + 3ab2 + b3

( a - b )2 = a2 - 2ab + b2

Khi đó ta có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.

⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10

⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10

⇔ 12x = - 6 ⇔ x = - 1/2.

Vậy giá trị x cần tìm là x= - 1/2

Tham khảo Lý thuyết & Bài tập Toán lớp 8 có đáp án khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

KHÓA HỌC GIÚP TEEN 2006 ĐẠT 9-10 LỚP 8

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 499K tại khoahoc.vietjack.com

Học tốt toán 8 - Thầy Phan Toàn

4.5 (243)

799,000đs

499,000 VNĐ

Tiếng Anh lớp 8 - Cô Hoài Thu

4.5 (243)

799,000đ

499,000 VNĐ

Học tốt Văn 8 - Cô Mỹ Linh

4.5 (243)

799,000đ

499,000 VNĐ

Loạt bài Lý thuyết & 700 Bài tập Toán lớp 8 có lời giải chi tiết có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 8 và Hình học 8.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.