Giải Vở thực hành Toán 7 trang 77 Tập 2 Kết nối tri thức

Với Giải VTH Toán 7 trang 77 Tập 2 trong Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác Vở thực hành Toán lớp 7 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong VTH Toán 7 trang 77.

Giải Vở thực hành Toán 7 trang 77 Tập 2 Kết nối tri thức

Câu 2 trang 77 vở thực hành Toán lớp 7 Tập 2: Với giả thiết như ở Câu 1, phương án nào sau đây là sai?

A. GA = 2GM;

B. NGGB=12;

C. PGPC=13;

D. MAGA=23.

Quảng cáo

Lời giải:

Đáp án đúng là: D

Với giả thiết như ở Câu 1, phương án nào sau đây là sai?GA = 2GM; NG/GB=1/2

Theo Câu 1, ta có: GAMA=GBNB=GCPC=23.

Từ GAMA=23, suy ra 3GA = 2MA hay 3GA = 2(GA + GM). Suy ra GA = 2GM. Vậy đáp án A đúng.

Tương tự, ta có GB = 2NG, suy ra NGGB=12. Vậy đáp án B đúng.

Từ GCPC=23, suy ra 3GC = 2PC hay 3(PC – PG) = 2PC, suy ra PC = 3PG.

Do đó, PGPC=13. Vậy đáp án C đúng.

Đáp án D sai do GAMA=23, suy ra MAGA=32.

Câu 3 trang 77 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC có các đường phân giác AD, BE, CF. Hãy điền vào chỗ trống để được khẳng định đúng.

a) Nếu AD, BE cắt nhau tại I thì CF ....................... I.

b) Nếu I là điểm chung của ba đường phân giác thì I ......................................................

Quảng cáo

Lời giải:

Cho tam giác ABC có các đường phân giác AD, BE, CF

a) Nếu AD, BE cắt nhau tại I thì CF đi qua I.

b) Nếu I là điểm chung của ba đường phân giác thì I là giao điểm của ba đường phân giác này và cách đều ba cạnh của tam giác ABC. 

Câu 4 trang 77 vở thực hành Toán lớp 7 Tập 2: Gọi I là giao điểm của ba đường phân giác của tam giác. Kết luận nào sau đây là đúng?

A. I không cách đều ba cạnh của tam giác;

B. I cách đều ba đỉnh của tam giác;

C. I là trọng tâm của tam giác;

D. I cách đều ba cạnh của tam giác.

Quảng cáo

Lời giải:

Đáp án đúng là: D

I là giao điểm của ba đường phân giác của tam giác nên I cách đều ba cạnh của tam giác.

Bài 1 (9.20) trang 77 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC với hai đường trung tuyến BN, CP và trọng tâm G. Hãy tìm số thích hợp đặt vào dấu “?” để được các đẳng thức:

BG = ? BN, CG = ? CP; BG = ? GN, CG = ? GP.

Quảng cáo

Lời giải:

Cho tam giác ABC với hai đường trung tuyến BN, CP và trọng tâm G

Vì G là trọng tâm của tam giác ABC nên ta có:

BG = 23 BN, CG = 23 CP,

BG = 2 GN, CG = 2 GP.

Bài 2 (9.21) trang 77 vở thực hành Toán lớp 7 Tập 2: Chứng minh rằng:

a) Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên là hai đoạn thẳng bằng nhau.

b) Ngược lại, nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.

Lời giải:

Chứng minh rằng:Trong một tam giác cân, hai đường trung tuyến ứng với hai cạnh bên

a) Tam giác ABC cân tại A và có BN, CP là hai đường trung tuyến. Ta cần chứng minh BN = CP.

Tam giác ABC cân tại A nên AB = AC; PBC^=NCB^.

Do N, P lần lượt là trung điểm của AC, AB nên BP = 12 AB, CN = 12 AC, do đó BP = CN.

Xét hai tam giác BCP và CBN, ta có:

BP = CN; PBC^=NCB^; BC chung, do đó ∆BCP = ∆CBN (c.g.c).

Suy ra CP = BN.

b) BN, CP là hai đường trung tuyến của tam giác ABC, BN = CP. Ta sẽ chứng minh AB = AC.

Gọi G là trọng tâm của tam giác ABC.

Xét hai tam giác PGB và NGC, ta có:

PG = NG; BG = CG; BGP^=CGN^ (đối đỉnh).

Vậy ∆PGB = ∆NGC (c.g.c), suy ra BP = NC.

Do đó AB = 2PB = 2NC = AC.

Vậy tam giác ABC cân tại A.

Lời giải Vở thực hành Toán lớp 7 Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác Kết nối tri thức hay khác:

Xem thêm lời giải Vở thực hành Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải VTH Toán lớp 7 hay nhất, chi tiết được biên soạn bám sát sách Vở thực hành Toán 7 Tập 1, Tập 2 bộ sách Kết nối tri thức (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác
Tài liệu giáo viên