20 câu trắc nghiệm Phương pháp quy nạp toán học - Dãy số (Toán lớp 11 - có đáp án)



20 câu trắc nghiệm Phương pháp quy nạp toán học - Dãy số

Câu 1. Hãy xem trong lời giải của bài toán sau đây có bước nào bị sai?

Bài toán: chứng minh rằng với mọi số nguyên dương n, mệnh đề sau đây đúng:

A(n) : “nếu a và b là những số nguyên dương mà max{a,b} = n thì a = b”

Quảng cáo

Chứng minh :

Bước 1: A(1):”nếu a,b là những số nguyên dương mà max{a,b} = 1 thì a = b”

Mệnh đề A(1) đúng vì max{a,b} = 1 và a,b là những số nguyên dương thì a= b =1.

Bước 2: giả sử A(k) là mệnh đề đúng vơi k≥1

Bước 3: xét max{a,b} = k+1 ⇒max{a-1,b-1} = k+ 1-1 = k

Do a(k) là mệnh đề đúng nên a- 1= b-1 ⇒ a= b⇒ A(k+1) đúng.

Vậy A(n) đúng với mọi n ∈N*

A. Bước 1         B. Bước 2

C. Bước 3         D. Không có bước nào sai

Câu 2. Mạnh cầm một tờ giấy và lấy kéo cắt thành 7 mảnh sau đó nhặt một trong số bảy mảnh giấy đã cắt và lại cắt thành 7 mảnh. Mạnh cứ tiếp tục cắt như vậy. Sau một hồi, Mạnh thu lại và đếm tất cả các mảnh giấy đã cắt. Hỏi kết quả nào sau đây có thể xảy ra?

A. Mạnh thu được 122 mảnh

B. Mạnh thu được 123 mảnh

C. Mạnh thu được 120 mảnh

D. Mạnh thu được 121 mảnh

Câu 3. Cho dãy số (un) xác định bởi un = n2 – 4n – 2. Khi đó u10 bằng:

A. 48         B. 60

C. 58         D. 10

Quảng cáo

Câu 4. Cho dãy số un = 1+ (n +3).3n. khi đó công thức truy hồi của dãy là:

A. un+1 = 1 +3un với n≥1

B. un+1 = 1 +3un + 3n+1 với n≥1

C. un+1 = un + 3n+1 - 2 với n≥1

D. un+1 =3un + 3n+1 - 2 với n≥1

Câu 5. Cho dãy số (un) xác định bởi :

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Công thức của un+1 theo n là:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Câu 6. Cho dãy số (vn) xác định bởi :

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Khi đó v11 bằng:

A. 311         B. 31024

C. 332         D. 322

Câu 7. Cho dãy số un = n2 – 4n + 7. Kết luận nào đúng?

A. Dãy (un) bị chặn trên

B. Dãy (un) bị chặn dưới

C. Dãy (un) bị chặn

D. Các mệnh đề A,B,C đều sai

Câu 8. Cho dãy số zn = 1 + (4n – 3).2n

A. Dãy zn là dãy tăng

B. Dãy zn bị chặn dưới

C. Cả A và B đề sai

D. Cả A và B đều đúng

Câu 9: Phép chứng minh sau đây nhận giá trị chân lí là gì?

A. Đúng

B. Sai

Quảng cáo

C. Không đúng không sai

D. Vừa đúng vừa sai

Bài toán: Chứng minh quy nạp:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chứng minh: Giả sử đẳng thức đúng với n = k ( k≠1)

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Ta chứng minh đẳng thức đúng với n = k+1. Thật vậy:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Vậy đẳng thức đúng với n = k + 1

Áp dụng nguyên lí quy nạp toán học ta suy ra đẳng thức đúng với mọi số tự nhiên n.

Câu 10: Cho x≠0 và x +1/x là một số nguyên.

Khi đó với mọi số nguyên dương n, có kết luận gì về T(n,x) = n+1/n.

A. T(n,x) là số vô tỉ

B. T(n,x) là số không nguyên

C. T(n,x) là số nguyên

D. Các kết luận trên đều sai

Hướng dẫn giải và Đáp án

Câu 1:

Đáp án là C. Ta có a,b∈N* không suy ra a -1, b -1∈N* . Do vậy không áp dụng được giả thiết quy nạp cho cặp {a -1, b -1}.

Chú ý: nêu bài toán trên đúng thì ta suy ra mọi số tự nhiên đều bằng nhau. Điều này là vô lí.

Câu 2:

Mỗi lần cắt một mảnh giấy thành 7 mảnh, tức là Mạnh tạo thêm 6 mảnh giấy. Do đó công thức tính số mảnh giấy theo n bước được thực hiện là Sn = 6n + 1. Ta chứng minh tính đúng đắn của công thức trên bằng phương pháp quy nạp theo n.

Bước cơ sở. Mạnh cắt mảnh giấy thành 7 mảnh, n =1, S(1) = 6.1+1 =7

Công thức đúng với n = 1

Quảng cáo

Bước quy nạp: giả sử sau k bước, Mạnh nhận được số mảnh giấy là S(k) = 6k + 1

Sang bước thứ k +1, Mạnh lấy một trong số những mảnh giấy nhận được trong k bước trước và cắt thành 7 mảnh. Tức là Mạnh đã lấy đi 1 trong S(k) mảnh và thay vào đó 7 mảnh được cắt ra. Vậy tổng số mảnh giấy ở bước k + 1 là: S(k =1) = S(k) -1 + 7= S(k) + 6 = 6k + 1 + 1 = 6(k+1) +1

Vậy công thức S(n) đúng với mọi n ∈N* . Theo công thức trên chỉ có phương án D thoả mãn vì 121 =6.20 + 1

Đáp án D

Câu 3:

u10 = 102 – 4.20 – 2 =58

Đáp án C

Câu 4:

un+1 = 1+ (n+4).3n+1 = 1 + (n+3).3n+1 + 3n+1

= 1 + 3n.(n+3).3 + 3n+1 = 3[1 + (n+ 3).3n] + 3n+1 – 2 = 3un + 3n+1 -2

Đáp án là D

Câu 5:

u1 = 1

u2 = 1 + 12

u3 = 1 + 12 + 22

u4 = 1 + 12 + 22 + 32

...

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

=> Đáp án A

Câu 6:

v1=3=32o

v2=32=321

v3=34=322

v4=38=323

...

vn=32n+1⇒v11=3210=32014

Đáp án là B

Câu 7:

un = n2 – 4n + 7 = (n -2)2 + 3≥3

⇒(un) bị chặn dưới bởi 3

(un) không bị chặn trên bởi vì n càng lớn thì un càng lớn

Đáp án là B

Câu 8:

zn+1 = 1 + (4n+1).2n+1;

zn = 1 + (4n-3).2n

⇒ zn+1-zn=2n+1(4n+5) > 0 ∀n∈N*

⇒ (zn) tăng ⇔ zn ≥ z1 = 3 ∀n∈N*

Đáp án là D

Câu 9: B

Phép chứng minh thiếu mất bước cơ sở kiểm tra mệnh đề đúng với n=1

Câu 10: C

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Ta sẽ chứng minh T(1,x) là số nguyên

Thật vậy, áp dụng phép chứng minh quy nạp, Ta có:

Bước cơ sở: T(1,x) là số nguyên. Khẳng định đúng với n=1

Bước quy nạp: Giả sử T(n,x) là số nguyên với mọi n≥1. Ta sẽ chứng minh T(n+1,x) cũng là số nguyên

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

=T(1,x).T(n,x) – T(n-1,x).

Theo giả thuyết quy nạp, Ta có T(1,x),T(n,x), T(n-1,x) là các số nguyên nên T(n+1,x) là số nguyên

Tham khảo thêm các Bài tập trắc nghiệm Đại số và giải tích 11 khác:

Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2003 ĐẠT 9-10 THI THPT QUỐC GIA

Đăng ký khóa học trước lớp 12 dành cho teen 2k3, tặng miễn phí khóa học tốt 11 kì 2 tại khoahoc.vietjack.com

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Khóa học 11