Trắc nghiệm Đại số 11 Bài 2 (có đáp án): Hoán vị - Chỉnh hợp - Tổ hợp (phần 1)



Trắc nghiệm Đại số 11 Bài 2 (có đáp án): Hoán vị - Chỉnh hợp - Tổ hợp (phần 1)

Bài 1: Sắp xếp năm bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Số cách sắp xếp sao cho bạn Chi luôn ngồi chính giữa là

Quảng cáo

A. 24

B. 120

C. 60

D. 16

Xếp bạn Chi ngồi giữa có 1 cách.

Số cách xếp 4 bạn sinh An, Bình, Dũng, Lệ vào 4 chỗ còn lại là một hoán vị của 4 phần tử nên có có 4! = 24 cách.

Vậy có 1.24 = 24 cách xếp.

Chọn đáp án A

Bài 2: Có 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách sắp xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau?

A. 345600

B. 725760

C.103680

D.518400

Số các hoán vị về màu bi khi xếp thành dãy là 3!

Số cách xếp 3 viên bi đen khác nhau thành dãy là 3!

Số cách xếp 4 viên bi đỏ khác nhau thành dãy là 4!

Số cách xếp 5 viên bi xanh khác nhau thành dãy là 5!

⇒ Số cách xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau là 3!. 3!. 4!. 5! = 103680 cách.

Chọn đáp án C

Bài 3: Có bao nhiêu cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài?

A.15

B. 720

C. 30

D. 360

Số cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài là một chỉnh hợp chập 4 của 6 phần tử.

Suy ra có Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 cách.

Chọn đáp án D

Bài 4: Trong một ban chấp hành đoàn gồm 7 người, cần chọn ra 3 người vào ban thường vụ. Nếu cần chọn ban thường vụ gồm ba chức vụ bí thư, phó bí thư, ủy viên thường vụ thì có bao nhiêu cách chọn?

A. 210

B. 200

C. 180

D. 150

Quảng cáo

Số cách chọn ban thường vụ gồm ba chức vụ bí thư, phó bí thư, ủy viên thường vụ từ 7 người là số các chỉnh hợp chập ba của bảy phần tử.

Vậy có Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11.

Chọn đáp án A

Bài 5: Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh để tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn như trên?

A.9880

B. 59280

C. 2300

D. 455

Nhóm học sinh 3 người được chọn (không phân biệt nam, nữ - công việc) là một tổ hợp chập 3 của 40 (học sinh).

Vì vậy, số cách chọn nhóm học sinh là Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án A

Bài 6: Có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)?

A. 10

B. 30

C. 6

D. 60

Cắm 3 bông hoa giống nhau, mỗi bông vào 1 lọ nên ta sẽ lấy 3 lọ bất kỳ trong 5 lọ khác nhau để cắm bông.

Vậy số cách cắm bông chính là một tổ hợp chập 3 của 5 phần tử (lọ hoa).

Như vậy, ta có Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 cách.

Chọn đáp án A

Bài 7: Trong mặt phẳng, cho 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?

A. 15

B. 20

C. 60

D. Một số khác.

Cứ 3 điểm phân biệt không thẳng hàng tạo thành một tam giác.

Lấy 3 điểm bất kỳ trong 6 điểm phân biệt thì số tam giác cần tìm chính là một tổ hợp chập 3 của 6 phần tử (điểm).

Như vậy, ta có Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 tam giác.

Chọn đáp án B

Quảng cáo

Bài 8: Một tổ có 4 học sinh nam và 5 học sinh nữ

a) Hỏi có bao nhiêu cách xếp học sinh trong tổ thành một hàng dọc?

A. 4!.5!       B. 4!+5!

C. 9!             D. A49.A59

b) Hỏi có bao nhiêu cách xếp học sinh trong tổ thành hàng dọc sao cho học sinh nam và nữ đúng xen kẽ nhau?

A. 4!.5!       B. 4!+5!

C. 9!             D. A49.A59

- Mỗi cách xếp có 4 + 5 = 9 học sinh thành hàng dọc là một hoán vị của 9 học sinh đó. Vậy có tất cả 9! cách xếp. Chọn đáp án là C

Nhận xét: học sinh có thể nhầm lẫn xếp nam và nữ riêng nên cho kết quả 4!.5! (phương án A); hoặc vừa xếp nam và nữ riêng và sử dụng quy tắc cộng để cho kết quả 4!+5! (phương án B); hoặc chọn 4 học sinh nam trong 9 học sinh và 5 học sinh nữ trong 9 học sinh để cho kết quả A94.A95 ( phương án D)

b) Do số học sinh nữ nhiều hơn số học sinh nam là 1 bạn nên để nam, nữ đứng xen kẽ thì nữ đứng trước.

- Nếu đánh số theo hàng dọc từ 1 đến 9 thì cần xếp 5 học nữ vào 5 vị trí lẻ nên có 5!cách xếp; và xếp 4 học sinh nam vào 4 vị trí chẵn nên có 4!cách xếp. Theo quy tắc nhân ta có, ta có 4!.5! Cách xếp 9 học sinh thành hàng dọc xen kẽ nam nữ.

Bài 9:

a) Từ tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}, lập được bao nhiêu số có bốn chữ số khác nhau?

A. 4!             B. A94

C. 9A93       D. C94

b) Có bao nhiêu số có bốn chữ số khác nhau?

A. 4!             B. 9A93

C. 9C93       D. Một đáp án khác

a) Mỗi số tự nhiên có bốn chữ số khác nhau được tạo ra từ các chữ số của tập A là một chỉnh hợp chập 4 của 9 phần tử.

Vậy có A94 số cần tìm. Chọn đáp án B

Nhận xét: học sinh có thể nhầm coi mỗi số có bốn chữ số là một hoán vị của 4 phần tử nên chọn kết quả là 4! (phương án A); hoặc là một tổ hợp tập 4 của 9 phần tử nên chọn kết quả C94 (phương án D); hoặc suy luận có 9 cách chọn chữ số hàng nghìn và có C93 cách chọn 3 chữ số còn lại nên có kết quả 9C93 (phương án C)

b) Gọi số có bốn chữ số khác nhau là

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Do a ∈ {1,2,3,4,5,6,7,8,9} nên có 9 cách chọn a.

Ứng với mỗi cách chọn a, còn 10 - 1 = 9 chữ số để viết

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

(b, c, d có thể bằng 0), mỗi cách viết

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

là một chỉnh hợp chập 3 của 9 chữ số, nên có A93 số

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Theo quy tắc nhân, có 9A93 số cần tìm. Chọn đáp án là B.

Bài 10: Trong mặt phẳng có 18 điểm phân biệt trong đó không có ba điểm nào thẳng hàng

a) Số tam giác mà các đỉnh của nó thuộc tập hợp các điểm đã cho là:

A. A183       B. C183

C. 6             D. 18!/3

b) Số vecto có điểm đầu và điểm cuối thuộc tập điểm đã cho là:

A. A182       B. C182

C. 6       D. 18!/2

- Chọn 3 điểm trong 18 điểm đã cho làm 3 đỉnh của một tam giác. Mỗi tam giác là một tổ hợp chập 3 của 18. Vì vậy số tam giác là C183 (chọn phương án B)

Nhận xét: học sinh có thể nhầm cho rằng mỗi tam giác là một chỉnh hợp chập 3 của 18, nên số tam giác là A183 (phương án A); hoặc suy luận một tam giác có 3 đỉnh nên 18 điểm cho ta 18/3 = 6 tam giác (phương án C); hoặc suy luận 18 điểm có 18! cách và mỗi tam giác có 3 đỉnh nên số tam giác là 18!/3 cách (phương án D)

- Do

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

Nên mỗi vecto là một chỉnh hợp chập hai của 18.

Vì vậy, số vecto là A182

Chọn đáp án A

Bài 11: Có 5 bì thư khác nhau và có 8 con tem khác nhau. Chọn từ đó ra 3 bì thư và 3 con tem sau đó dán 3 con tem lên 3 bì thư đã chọn. Biết rằng một bì thư chỉ dán 1 con tem. Hỏi có bao nhiêu cách dán?

A. A53.A83       B. 3!A53 A83

C. C53.C83       D. 3!C53.C83

Có 5 bì thư khác nhau, chọn 3 bì thư có C53 cách chọn

Có 8 tem khác nhau, chọn 3 con tem thì có C83 cách chọn

Dán 3 con tem lên 3 bì thư thì có 3!cách dán khác nhau. Theo quy tắc nhân ta có 3!C53.C83 cách dán 3 con tem lên 3 bì thư

Chọn đáp án D

Nhận xét: học sinh có thể nhầm lẫn: số cách chọn 3 bì thư là A53, số cách chọn 3 con tem là A83 hoặc không tính cách dán 3 con tem lên 3 bì thư dẫn đến có thể chọn các phương án A, B và C.

Bài 12: Giải phương trình Ax3+Cxx-3=14x (x là ẩn số)

A. x= 5 và x= -2       B. x = 5

C. x= -2             D. vô nghiệm

Điều kiện x ∈ N và x ≥ 3, ta có:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Xem thêm các Bài tập trắc nghiệm & Câu hỏi trắc nghiệm Đại số và Giải tích 11 có lời giải hay khác:

Giới thiệu kênh Youtube VietJack

Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, VIETJACK HỖ TRỢ DỊCH COVID

Đăng ký khóa học tốt 11 dành cho teen 2k4 tại khoahoc.vietjack.com

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k5: fb.com/groups/hoctap2k5/

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.