Cho đồ thị G = V, E và hai đỉnh s, t bất kì. Chứng minh tính chất
Giải Chuyên đề Tin 12 Bài 14: Kĩ thuật duyệt đồ thị theo chiều sâu - Kết nối tri thức
Vận dụng 3 trang 71 Chuyên đề Tin học 12: Cho đồ thị G = (V, E) và hai đỉnh s, t bất kì. Chứng minh tính chất: Tồn tại đường đi từ s đến t khi và chỉ khi quá trình duyệt theo chiều sâu từ đỉnh s sẽ duyệt qua đỉnh t, hay nói cách khác, quá trình duệt theo chiều sâu từ đỉnh s sẽ đi qua tất cả các đỉnh nằm trong thành phần liên thông chứa đỉnh s, trong đó có đỉnh t.
Lời giải:
Để chứng minh tính chất: "Tồn tại đường đi từ đỉnh s đến đỉnh t khi và chỉ khi quá trình duyệt theo chiều sâu từ đỉnh s sẽ duyệt qua đỉnh t", chúng ta cần chứng minh hai điều sau:
- Nếu tồn tại đường đi từ đỉnh s đến đỉnh t, thì quá trình duyệt DFS từ đỉnh s sẽ duyệt qua đỉnh t.
- Nếu quá trình duyệt DFS từ đỉnh s duyệt qua đỉnh t, thì tồn tại đường đi từ đỉnh s đến đỉnh t.
Chứng minh điều 1: Nếu tồn tại đường đi từ đỉnh s đến đỉnh t, thì quá trình duyệt DFS từ đỉnh s sẽ duyệt qua đỉnh t
- Giả sử tồn tại đường đi từ đỉnh s đến đỉnh t. Điều này có nghĩa là có một dãy các đỉnh s = v0,v1,v2,…,vk=t sao cho (vi,vi+1) ∈ E với mọi 0 ≤ i< k Khi thực hiện DFS từ đỉnh s, DFS sẽ thăm tất cả các đỉnh mà nó có thể truy cập được từ s. Điều này bao gồm các đỉnh v1,v2,…,vk vì chúng liên tiếp nhau trong đường đi từ s đến t.
- Do đó, nếu tồn tại đường đi từ đỉnh s đến đỉnh t, DFS sẽ chắc chắn thăm đỉnh t trong quá trình duyệt.
Chứng minh điều 2: Nếu quá trình duyệt DFS từ đỉnh s duyệt qua đỉnh t, thì tồn tại đường đi từ đỉnh s đến đỉnh t
- Giả sử quá trình duyệt DFS từ đỉnh s duyệt qua đỉnh t. Điều này có nghĩa là DFS đã bắt đầu từ đỉnh s và theo các cạnh của đồ thị, nó đã đến đỉnh t.
- DFS duyệt đồ thị bằng cách đi theo các cạnh của đồ thị, nên mỗi bước từ đỉnh hiện tại đến đỉnh tiếp theo trong quá trình duyệt DFS đều là di chuyển qua các cạnh của đồ thị.
- Nếu DFS đã thăm đỉnh t từ đỉnh s, điều đó có nghĩa là có một dãy các đỉnh bắt đầu từ s và kết thúc tại t sao cho mỗi đỉnh trong dãy này đều có cạnh nối với đỉnh tiếp theo trong dãy.
- Do đó, tồn tại một đường đi từ đỉnh s đến đỉnh t.
Kết luận
Từ hai phần chứng minh trên, ta có thể kết luận rằng:
- Tồn tại đường đi từ đỉnh s đến đỉnh t khi và chỉ khi quá trình duyệt theo chiều sâu từ đỉnh s sẽ duyệt qua đỉnh t.
- Điều này cũng có nghĩa là quá trình duyệt theo chiều sâu từ đỉnh s sẽ đi qua tất cả các đỉnh nằm trong thành phần liên thông chứa đỉnh s, trong đó có đỉnh t.
Nói cách khác, DFS từ đỉnh s sẽ duyệt qua tất cả các đỉnh thuộc cùng một thành phần liên thông với đỉnh s.
Lời giải bài tập Chuyên đề Tin 12 Bài 14: Kĩ thuật duyệt đồ thị theo chiều sâu hay, ngắn gọn khác:
Xem thêm lời giải bài tập Chuyên đề học tập Tin học 12 Kết nối tri thức hay, ngắn gọn khác:
Chuyên đề Tin học 12 Bài 15: Thực hành duyệt đồ thị theo chiều sâu
Chuyên đề Tin học 12 Bài 16: Kĩ thuật duyệt đồ thị theo chiều rộng
Chuyên đề Tin học 12 Bài 17: Thực hành duyệt đồ thị tổng hợp
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải Chuyên đề Tin học 12 Kết nối tri thức
- Giải Chuyên đề Tin học 12 Chân trời sáng tạo
- Giải Chuyên đề Tin học 12 Cánh diều
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều