Bài 3 trang 28 Chuyên đề Toán 12 Cánh diều

Giải Chuyên đề Toán 12 Bài 1: Vận dụng hệ bất phương trình bậc nhất để giải quyết một số bài toán quy hoạch tuyến tính - Cánh diều

Bài 3 trang 28 Chuyên đề Toán 12: Người ta cần sơn hai loại sản phẩm A, B bằng hai loại sơn: sơn xanh, sơn vàng. Lượng sơn để sơn mỗi loại sản phẩm đó được cho ở Bảng 3 (đơn vị: kg/1 sản phẩm).

Quảng cáo

Bài 3 trang 28 Chuyên đề Toán 12 Cánh diều

Người ta dự định sử dụng không quá 12 kg sơn xanh và không quá 8 kg sơn vàng để sơn tất cả các sản phẩm của hai loại đó. Mỗi sản phẩm loại A lãi 10 triệu đồng và mỗi sản phẩm loại B lãi 8 triệu đồng. Tính số lượng sản phẩm từng loại cần sơn sao cho số tiền lãi thu được là lớn nhất.

Lời giải:

Gọi x và y lần lượt là số sản phẩm loại A và loại B người đó cần sơn (x ∈ ℕ, y ∈ ℕ).

Số tiền lãi người đó thu được là: T = 10x + 8y (triệu đồng).

Số kg sơn xanh người đó cần dùng là: 6x + 2y ≤ 12 hay 3x + y ≤ 6;

Số kg sơn vàng người đó cần dùng là: 2x + 2y ≤ 8 hay x + y ≤ 4.

Vì vậy, yêu cầu của người đó có thể viết ở dạng tổng quát của bài toán quy hoạch tuyến tính sau:

Bài 3 trang 28 Chuyên đề Toán 12 Cánh diều

Xét hệ bất phương trình bậc nhất hai ẩn (x, y là các số thực): 3x+y6x+y4x0y0.    I'

Ta cần tìm giá trị lớn nhất của biểu thức T = 10x + 8y khi (x; y) thỏa mãn hệ bất phương trình (I’).

Bước 1. Xác định miền nghiệm của hệ bất phương trình (I’).

Miền nghiệm là miền tứ giác OABC với tọa độ các đỉnh O(0; 0), A(0; 4), B(1; 3), C(2; 0) (hình vẽ).

Bài 3 trang 28 Chuyên đề Toán 12 Cánh diều

Bước 2. Tính giá trị của biểu thức T(x; y)  = 10x + 8y tại các đỉnh của tứ giác này:

T(0; 0) = 0; T(0; 4) = 32; T(1; 3) = 34; T(2; 0) = 20.

Bước 3. Ta đã biết biểu thức T = 10x + 8y đạt giá trị lớn nhất tại cặp số thực (x; y) là tọa độ một trong các đỉnh của tứ giác OABC. So sánh bốn giá trị thu được của T ở Bước 2, ta được giá trị lớn nhất cần tìm là T(1; 3) = 34.

Bước 4. Vì 1 và 3 đều là các số tự nhiên nên cặp số (1; 3) là nghiệm của bài toán (I).

Vậy để số tiền lãi thu được là lớn nhất thì cần sơn 1 sản phẩm loại A và 3 sản phẩm loại B.

Quảng cáo

Lời giải bài tập Chuyên đề Toán 12 Bài 1: Vận dụng hệ bất phương trình bậc nhất để giải quyết một số bài toán quy hoạch tuyến tính hay, chi tiết khác:

Quảng cáo
Quảng cáo

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên