Bài 5 trang 28 Chuyên đề Toán 12 Cánh diều
Giải Chuyên đề Toán 12 Bài 1: Vận dụng hệ bất phương trình bậc nhất để giải quyết một số bài toán quy hoạch tuyến tính - Cánh diều
Bài 5 trang 28 Chuyên đề Toán 12: Bác Dũng đầu tư không quá 1,2 tỉ đồng vào hai loại cổ phiếu: cổ phiếu A dự kiến chi trả cổ tức bằng tiền với tỉ lệ 5%; cổ phiếu B rủi ro cao dự kiến chi trả cổ tức bằng tiền với tỉ lệ 12%. Giá cổ phiếu A là 30 000 đồng/1 cổ phiếu, giá cổ phiếu B là 40 000 đồng/1 cổ phiếu. Để giảm thiểu rủi ro, bác Dũng quyết định mua số lượng cổ phiếu B không quá 10 000 cổ phiếu. Hỏi bác Dũng nên đầu tư mỗi loại bao nhiêu cổ phiếu để lợi nhuận thu được là lớn nhất?
Lời giải:
Gọi bác Dũng cần mua x cổ phiếu A và y cổ phiếu B (x ∈ ℕ, y ∈ ℕ).
Khi đó, số tiền bác Dũng cần chi ra là: 30 000x + 40 000y (đồng).
Vì số tiền bác Dũng đầu tư không quá 1,2 tỉ đồng nên ta có:
30 000x + 40 000y ≤ 1 200 000 000 hay 3x + 4y ≤ 120 000.
Vì số lượng cổ phiếu B được mua không quá 10 000 cổ phiếu nên y ≤ 10 000.
Một cổ phiếu A sẽ nhận được số tiền chi trả cổ tức là: 5% . 30 000 = 1 500 (đồng).
Một cổ phiếu B sẽ nhận được số tiền chi trả cổ tức là: 12% . 40 000 = 4 800 (đồng).
Do đó, bác Dũng nhận được số tiền chi trả cổ tức là: T = 1 500x + 4 800y (đồng).
Vì vậy, yêu cầu của bác Dũng có thể viết ở dạng tổng quát của bài toán quy hoạch tuyến tính sau:
Xét hệ bất phương trình bậc nhất hai ẩn (x, y là các số thực):
Ta cần tìm giá trị lớn nhất của biểu thức T = 1 500x + 4 800y khi (x; y) thỏa mãn hệ bất phương trình (I’).
Bước 1. Xác định miền nghiệm của hệ bất phương trình (I’).
Miền nghiệm là miền tứ giác OABC với tọa độ các đỉnh O(0; 0), A(0; 10 000), C(40 000; 0) (hình vẽ).
Bước 2. Tính giá trị của biểu thức T(x; y) = 1 500x + 4 800y tại các đỉnh của tứ giác này:
T(0; 0) = 0; T(0; 10 000) = 48 000 000;
T(40 000; 0) = 60 000 000.
Bước 3. Ta đã biết biểu thức T = 1 500x + 4 800y đạt giá trị lớn nhất tại cặp số thực (x; y) là tọa độ một trong các đỉnh của tứ giác OABC. So sánh bốn giá trị thu được của T ở Bước 2, kết hợp điều kiện x và y là các số tự nhiên, ta được giá trị lớn nhất cần tìm là T(40 000; 0) = 60 000 000.
Vậy bác Dũng nên đầu tư loại A 40 000 cổ phiếu để lợi nhuận thu được là lớn nhất.
Lời giải bài tập Chuyên đề Toán 12 Bài 1: Vận dụng hệ bất phương trình bậc nhất để giải quyết một số bài toán quy hoạch tuyến tính hay, chi tiết khác:
Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Cánh diều hay, chi tiết khác:
Chuyên đề Toán 12 Bài 2: Phân bố Bernoulli. Phân bố nhị thức
Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm để giải quyết một số bài toán tối ưu trong thực tiễn
Chuyên đề Toán 12 Bài 3: Đầu tư tài chính. Lập kế hoạch tài chính cá nhân
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều