Luyện tập 1 trang 37 Chuyên đề Toán 12 Kết nối tri thức
Giải Chuyên đề Toán 12 Bài 4: Vận dụng đạo hàm để giải quyết một số bài toán tối ưu - Kết nối tri thức
Luyện tập 1 trang 37 Chuyên đề Toán 12: Một vật được ném từ mặt đất lên trời xiên góc α so với phương nằm ngang với vận tốc ban đầu v0 = 9 m/s (H.2.10). Khi đó quỹ đạo chuyển động của vật tuân theo phương trình ở đó x (mét) là khoảng cách vật bay được theo phương ngang từ điểm ném, y (mét) là độ cao so với mặt đất của vật trong quá trình bay, g là gia tốc trọng trường (theo Vật lí đại cương, Nhà xuất bản Giáo dục Việt Nam, 2016).
a) Tính độ cao nhất của vật trên quỹ đạo và xác định thời điểm mà vật đạt được độ cao đó (giả sử gia tốc trọng trường là g = 9,8 m/s2).
b) Xác định góc ném α để tầm ném xa của vật đạt giá trị lớn nhất.
Lời giải:
a) Ta luôn có y ≥ 0 và dễ thấy y = 0 tại x = x1 = 0 và x = x2 (hình vẽ).
Xét trên khoảng [0; x2].
Đạo hàm của hàm y là
Ta có
Vận dụng phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, ta có:
Vì giá trị là giá trị lớn nhất trong ba giá trị trên, nên giá trị lớn nhất của y là đạt được khi
Từ hình vẽ, ta có vx = v0.cosα, mà x = vx.t nên
Thay v0 = 9 m/s và g = 9,8 m/s2 vào (*) và (**) ta được:
tại
Vậy vật đạt độ cao nhất trên quỹ đạo là tại thời điểm (s).
b) Từ câu a, ta có hình vẽ như sau:
Khi đó, tầm ném xa của vật là:
Xét hàm số trên đoạn [0°; 90°].
Đạo hàm của hàm L là
Ta có
Vận dụng phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, ta có:
Vì giá trị L(45°) là giá trị lớn nhất trong ba giá trị trên, nên giá trị nhỏ nhất của L đạt được khi α = 45°.
Vậy để tầm ném xa của vật đạt giá trị lớn nhất thì góc ném là 45°.
Lời giải bài tập Chuyên đề Toán 12 Bài 4: Vận dụng đạo hàm để giải quyết một số bài toán tối ưu hay, chi tiết khác:
Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải Chuyên đề học tập Toán 12 Kết nối tri thức
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều