Toán 7 Ôn tập chương 2 (Câu hỏi - Bài tập)
Toán 7 Ôn tập chương 2 (Câu hỏi - Bài tập)
Lời giải
- Tổng ba góc của một tam giác bằng 180 o
- Mỗi góc ngoài của một tam giác bằng tổng của hai góc trong không kề với nó.
Lời giải
- Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
- Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.
- Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.
Lời giải
- Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
- Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
- Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Lời giải
- Tam giác cân là tam giác có hai cạnh bằng nhau.
- Tính chất: Trong một tam giác cân, hai góc ở đáy bằng nhau
- Các cách chứng minh một tam giác là tam giác cân:
• Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.
• Nếu một tam giác có hai cạnh bằng nhau thì tam giác đó là tam giác cân.
Lời giải
- Tam giác đều là tam giác có ba cạnh bằng nhau.
- Tính chất: Trong một tam giác đều, mỗi góc bằng 60 o
- Các cách chứng minh một tam giác là tam giác đều:
• Nếu một tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều.
• Nếu một tam giác cân có một góc bằng 60 o thì tam giác đó là tam giác đều.
Lời giải
- Định lí Py – ta – go thuận:
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.
- Định lí Py – ta – go đảo:
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
Bài 67 trang 140 sgk Toán lớp 7 Tập 1:
Câu | Đúng | Sai |
---|---|---|
1. Trong một tam giác, góc nhỏ nhất là góc nhọn | ||
2. Trong một tam giác có ít nhất là hai góc nhọn | ||
3. Trong một tam giác góc lớn nhất là góc tù | ||
4. Trong một tam giác vuông , hai góc nhọn bù nhau | ||
5. Nếu góc A là góc ở đáy của một tam giác cân thì góc A < 90 o | ||
6. Nếu góc A là góc ở đỉnh của một tam giác cân thì góc A < 90 o |
Lời giải:
1. Đúng
2. Đúng
3. Sai. Tam giác nhọn có 3 góc đều nhọn.
4. Sai. Hai góc nhọn phụ nhau.
5. Đúng.
6. Sai. Ví dụ tam giác ABC có 3 góc lần lượt là 120º, 30º, 30º là tam giác cân có góc ở đỉnh bằng 120º.
Bài 68 trang 141 sgk Toán lớp 7 Tập 1: Các tính chất, sau đây được suy ra trực tiếp từ định lí nào ?
a) Góc ngoài của một tam giác bằng tổng hai góc trong không kề với nó.
b) Trong một tam giác vuông hai góc nhọn phụ nhau.
c) Trong một tam giác đều, các góc bằng nhau.
d) Nếu một tam giác có ba góc bằng nhau thì tam giác đo là tam giác đều.
Lời giải:
- Các tính chất ở các câu a, b được suy ra từ định lí "Tổng ba góc của một tam giác bằng 180 o ".
* Chứng minh:
a) ?4 bài 1 – trang 107.
b) Tam giác ABC vuông tại A
- Tính chất ở câu c được suy ra từ định lí "Trong một tam giác cân hai góc ở đáy bằng nhau".
* Chứng minh:
Giả sử có tam giác ABC đều ⇒ AB = AC =BC ⇒ ΔABC cân tại A và cân tại B
- Tính chất ở câu d được suy ra từ định lí: "Nếu một tam giác có hai góc bằng nhau thì tam giác đo là tam giác cân".
* Chứng minh:
⇒ AB = AC = BC ⇒ ΔABC là tam giác đều.
Lời giải:
Gọi bán kính cung tròn tâm A là r, bán kính cung tròn tâm B và C là r’.
Xét ΔABD và ΔACD có:
AB = AC (=r)
DB = DC (=r')
AD cạnh chung
Nên ΔABD = ΔACD (c.c.c)
- Gọi H là giao điểm của AD và a
ΔAHB và ΔAHC có
AB = AC (= r)
AH cạnh chung
⇒ ΔAHB = ΔAHC (c.g.c)
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ BH ⊥ AM, kẻ CK ⊥ AN. Chứng minh rằng BH = CK
c) Chứng minh rằng AH = AK
d) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì ? Vì sao
e) Khi góc BAC = 60 o và BM = CN = BC hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC
Lời giải:
a) ΔABC cân tại A suy ra
Ta lại có :
- ΔABM và ΔACN có
AB = AC (Do ΔABC cân tại A).
BM = CN(gt)
⇒ ΔABM = ΔACN (c.g.c)
⇒ AM = AN (hai cạnh tương ứng) ⇒ ΔAMN cân tại A.
b) Xét ΔBHM vuông tại H và ΔCKN vuông tại K có:
BM = CN (gt)
⇒ ΔBHM = ΔCKN (cạnh huyền – góc nhọn)
⇒ BH = CK (hai cạnh tương ứng)
c) Theo câu b ta có ΔBHM = ΔCKN ⇒ HM = KN (hai cạnh tương ứng)
Mà AM = AN ⇒ AM –MH = AK – KN hay AH = AK.
d) ΔBHM = ΔCKN
Vậy tam giác OBC là tam giác cân tại O.
e) Khi góc BAC = 60º và BM = CN = BC
Tam giác cân ABC có góc BAC = 60º nên là tam giác đều
⇒ AB = BC và góc B1 = 60º
Ta có: AB = CB, BC = BM (gt) ⇒ AB = BM ⇒ ΔABM cân ở B ⇒
Mà theo tính chất góc ngoài trong ΔBAM thì
Tương tự ta có
* Ta chứng minh tam giác OBC là tam giác đều.
Bài 71 trang 141 sgk Toán lớp 7 Tập 1: Tam giác ABC trên giấy kẻ ô vuông là tam giác gì.
Lời giải:
Vẽ lại hình:
Áp dụng định lý Pytago :
- Trong tam giác ABH có : AB 2 = AH 2 + HB 2 = 2 2 + 3 2 = 13.
- Trong tam giác AKC có : AC 2 = AK 2 + KC 2 =2 2 + 3 2 = 13.
- Trong tam giác BCI có: BC 2 = BI 2 + IC 2 = 1 2 + 5 2 =26.
Nhận thấy AB 2 = AC 2 ⟹ AB = AC nên ∆ABC cân tại A (1)
Áp dụng định lý Pytago đảo ta thấy AB 2 + AC 2 = BC 2 nên ∆ABC vuông tại A (2)
Từ (1) và (2) suy ra ∆ABC vuông cân tại A.
a) Một tam giác đều.
b) Một tam giác cân mà không đều.
c) Một tam giác vuông.
Em hãy giúp Cường trong trường hợp trên.
Lời giải:
a) Xếp tam giác đều: Xếp tam giác với mỗi cạnh là bốn que diêm.
b) Một tam giác cân mà không đều: 2 cạnh bên 5 que diêm, cạnh đáy 2 que.
c) Xếp tam giác vuông: Xếp tam giác có các cạnh lần lượt là ba, bốn và năm que diêm. (Cạnh huyền 5 que diêm, 2 cạnh bên lần lượt là 3, 4 que diêm vì 5 2 = 3 2 + 4 2 ).
Lời giải:
+ ΔAHB vuông tại H
Theo định lí Py–ta- go ta có
HB 2 = AB 2 – AH 2 = 5 2 – 3 2 =25 - 9 =16
Suy ra HB = 4 (m)
Suy ra HC = BC – HB = 10 - 4 = 6(m)
+ ΔAHC vuông tại H
Theo định lí Py-ta-go ta có
AC 2 = AH 2 + HC 2 = 3 2 + 6 2 = 9 + 36 = 45.
Suy ra AC = √45 ≈ 6,7(m)
Độ dài đường trượt ACD bằng: 6,7 + 2= 8,7 (m)
Và hai lần đường lên BA bằng 5.2 =10 (m)
Đo độ dài đường trượt ACD chưa bằng hai lần đườg lên BA
Vậy bạn Mai nói sai, bạn Vân nói đúng.
Xem thêm Video Giải bài tập Toán lớp 7 hay và chi tiết khác:
- Bài 1: Thu thập số liệu thống kê, tần số - Luyện tập trang 8-9)
- Luyện tập trang 8-9
- Bài 2: Bảng "tần số" các giá trị của dấu hiệu - Luyện tập trang 12)
- Luyện tập trang 12
- Bài 3: Biểu đồ
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Video Giải bài tập Toán lớp 7 hay, chi tiết của chúng tôi được biên soạn bám sát sách giáo khoa Toán 7 Tập 1, Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều