Giải bài tập Toán lớp 8 Bài 5: Phương trình chứa dấu giá trị tuyệt đối
Giải bài tập Toán lớp 8 Bài 5: Phương trình chứa dấu giá trị tuyệt đối
Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 50 - Video giải tại 3:03 : Rút gọn các biểu thức:
a) C = |-3x| + 7x – 4 khi x ≤ 0;
b) D = 5 – 4x + |x - 6| khi x < 6.
Lời giải
a) x ≤ 0 nên – 3x ≥ 0 ⇒ |-3x| = -3x
Vậy C = |-3x| + 7x – 4 = -3x + 7x - 4 = 4x - 4
b) x < 6 nên x – 6 < 0 ⇒ |x - 6| = -(x - 6) = 6 - x
Vậy D = 5 – 4x + |x - 6| = 5 – 4x + 6 – x = 11 – 5x
Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 51 - Video giải tại 8:22 : Giải các phương trình:
a) |x + 5| = 3x + 1;
b) |-5x| = 2x + 21.
Lời giải
a)
+) Ta có: | x+ 5| = x + 5 khi x+ 5 ≥ 0 hay x ≥ -5
| x+ 5| = - (x + 5) khi x+ 5 < 0 hay x < - 5
Vậy để giải phương trình đã cho ta quy về giải hai phương trình:
+) Phương trình: x + 5 = 3x + 1 với điều kiện x ≥ -5
Ta có: x + 5 = 3x + 1
⇔ - 2x = - 4 ⇔ x = 2 (thỏa mãn điều kiện x ≥ -5)
+)Phương trình: - (x + 5) = 3x + 1 với điều kiện x < -5
Ta có: -x - 5 = 3x + 1 ⇔ - 4x = 6
⇔ x = (không thỏa mãn điều kiện x < -5)
Vậy tập nghiệm của bất phương trình |x + 5| = 3x + 1 là S = {2}
b)
+) Ta có: |- 5x| = - 5x khi -5x ≥ 0 hay x ≤ 0
| - 5x| = 5x khi – 5x < 0 hay x > 0
Vậy để giải phương trình đã cho ta quy về giải hai phương trình:
+) Phương trình: - 5x = 2x + 21 với điều kiện x ≥ 0
⇔ - 7x = 21 ⇔ x = - 3 ( thỏa mãn điều kiện x ≤ 0 )
+) Phương trình: 5x = 2x + 21 với điều kiện x> 0
⇔ 3x = 21
⇔ x = 7 (thỏa mãn điều kiện x > 0)
Vậy tập nghiệm của bất phương trình |-5x|= 2x + 21 là S = {-3; 7}.
a) A = 3x + 2 + |5x| trong hai trường hợp: x ≥ 0 và x < 0;
b) B = |-4x| - 2x + 12 trong hai trường hợp: x ≤ 0 và x > 0;
c) C = |x - 4| - 2x + 12 khi x > 5;
d) D = 3x + 2 + |x + 5|.
Lời giải
a) - Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x
Vậy A = 3x + 2 + 5x = 8x + 2
- Khi x < 0 ta có 5x < 0 nên |5x| = -5x
Vậy A = 3x + 2 - 5x = -2x + 2
b) - Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x
Vậy B = -4x - 2x + 12 = -6x + 12
- Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x
Vậy B = 4x - 2x + 12 = 2x + 12
c) - Khi x > 5 ta có x - 4 > 1 (trừ hai vế cho 4) hay x - 4 > 0 nên |x - 4| = x - 4
Vậy C = x - 4 - 2x + 12 = -x + 8
d) Ta có: |x + 5| = x + 5 khi x + 5 ≥ 0 hay x ≥ -5.
|x + 5| = -(x + 5) khi x + 5 < 0 hay x < -5.
Vậy :
+ Với x ≥ -5 thì D = 3x + 2 + x + 5 = 4x + 7.
+ Với x < -5 thì D = 3x + 2 – (x + 5) = 3x + 2 – x – 5 = 2x – 3.
Bài 36 trang 51 SGK Toán 8 Tập 2 - Video giải tại 22:16) : Giải các phương trình:
a) |2x| = x - 6 ; b) |-3x| = x - 8
c) |4x| = 2x + 12 ; d) |-5x| - 16 = 3x
Lời giải:
a) |2x| = x – 6 (1)
Ta có: |2x| = 2x khi 2x ≥ 0 hay x ≥ 0
|2x| = -2x khi 2x < 0 hay x < 0.
Vậy phương trình (1) tương đương với:
+ 2x = x – 6 với điều kiện x ≥ 0
2x = x – 6 ⇔ x = -6
Giá trị x = -6 không thỏa mãn điều kiện x ≥ 0 nên không phải nghiệm của (1)
+ -2x = x – 6 với điều kiện x < 0
-2x = x – 6 ⇔ -3x = -6 ⇔ x = 2.
Giá trị x = 2 không thỏa mãn điều kiện x < 0 nên không phải nghiệm của (1).
Vậy phương trình (1) vô nghiệm.
b) |-3x| = x – 8 (2)
Ta có: |-3x| = -3x khi -3x ≥ 0 hay x ≤ 0.
|-3x| = -(-3x) = 3x khi -3x < 0 hay x > 0.
Vậy phương trình (2) tương đương với:
+ -3x = x – 8 với điều kiện x ≤ 0
-3x = x – 8 ⇔ -4x = -8 ⇔ x = 2
Giá trị x = 2 không thỏa mãn điều kiện x ≤ 0 nên không phải nghiệm của (2).
+ 3x = x – 8 với điều kiện x > 0
3x = x – 8 ⇔ 2x = -8 ⇔ x = -4.
Giá trị x = -4 không thỏa mãn điều kiện x > 0 nên không phải nghiệm của (2).
Vậy phương trình (2) vô nghiệm.
c) |4x| = 2x + 12 (3)
Ta có: |4x| = 4x khi 4x ≥ 0 ⇔ x ≥ 0
|4x| = -4x khi 4x < 0 hay x < 0.
Vậy phương trình (3) tương đương với:
+ 4x = 2x + 12 với điều kiện x ≥ 0
4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6.
Giá trị x = 6 thỏa mãn điều kiện x ≥ 0 nên là nghiệm của (3)
+ -4x = 2x + 12 với điều kiện x < 0
-4x = 2x + 12 ⇔ -6x = 12 ⇔ x = -2.
Giá trị x = -2 thỏa mãn điều kiện x < 0 nên là nghiệm của (3).
Vậy phương trình (3) có hai nghiệm x = 6 và x = -2.
d) |-5x| - 16 = 3x (4)
Ta có: |-5x| = -5x khi -5x ≥ 0 hay x ≤ 0.
|-5x| = -(-5x) = 5x khi -5x < 0 hay x > 0.
Vậy phương trình (4) tương đương với:
+ -5x – 16 = 3x với điều kiện x ≤ 0.
-5x – 16 = 3x ⇔ -5x – 3x = 16 ⇔ -8x = 16 ⇔ x = -2.
Giá trị x = -2 thỏa mãn điều kiện x ≤ 0 nên là nghiệm của (4).
+ 5x – 16 = 3x với điều kiện x > 0.
5x – 16 = 3x ⇔ 5x – 3x = 16 ⇔ 2x = 16 ⇔ x = 8
Giá trị x = 8 thỏa mãn điều kiện x > 0 nên là nghiệm của (4).
Vậy phương trình (4) có nghiệm x = -2 và x = 8.
Bài 37 trang 51 SGK Toán 8 Tập 2 - Video giải tại 35:21) : Giải các phương trình:
a) |x - 7| = 2x + 3 ; b) |x + 4| = 2x - 5
c) |x+ 3| = 3x - 1 ; d) |x - 4| + 3x = 5
Lời giải:
a) |x – 7| = 2x + 3 (1)
Ta có: |x – 7| = x – 7 khi x – 7 ≥ 0 hay x ≥ 7.
|x – 7| = -(x – 7) = 7 – x khi x – 7 < 0 hay x < 7.
Vậy phương trình (1) tương đương với:
+ x – 7 = 2x + 3 khi x ≥ 7
x – 7 = 2x + 3 ⇔ x = -10.
Giá trị x = -10 không thỏa mãn điều kiện x ≥ 7 nên không phải nghiệm của (1).
+ 7 – x = 2x + 3 khi x < 7.
7 – x = 2x + 3 ⇔ 3x = 4 ⇔ x = 4/3
Giá trị x = 4/3 thỏa mãn điều kiện x < 7 nên là nghiệm của (1)
Vậy phương trình (1) có nghiệm x = 4/3.
b) |x + 4| = 2x – 5 (2)
Ta có: |x + 4| = x + 4 khi x + 4 ≥ 0 hay x ≥ -4.
|x + 4| = -(x + 4) = -x – 4 khi x + 4 < 0 hay x < -4.
Vậy phương trình (1) tương đương với:
+ x + 4 = 2x – 5 khi x ≥ -4
x + 4 = 2x – 5 ⇔ x = 9
Giá trị x = 9 thỏa mãn điều kiện x ≥ -4 nên là nghiệm của (2).
+ -x – 4 = 2x – 5 khi x < -4.
– x – 4 = 2x – 5 ⇔ 3x = 1 ⇔ x = 1/3
Giá trị x = 1/3 không thỏa mãn điều kiện x < -4 nên không phải nghiệm của (2)
Vậy phương trình (2) có nghiệm x = 9.
c) |x + 3| = 3x – 1 (3)
Ta có : |x + 3| = x + 3 khi x + 3 ≥ 0 hay x ≥ -3.
|x + 3| = -(x + 3) = -x – 3 khi x + 3 < 0 hay x < -3.
Vậy phương trình (3) tương đương với:
+ x + 3 = 3x – 1 với điều kiện x ≥ -3
x + 3 = 3x – 1 ⇔ 2x = 4 ⇔ x = 2.
Giá trị x = 2 thỏa mãn điều kiện x ≥ -3 nên là nghiệm của phương trình (3).
+ -x – 3 = 3x – 1 với điều kiện x < -3
-x – 3 = 3x – 1 ⇔ 4x = -2 ⇔ x = -1/2.
Giá trị x = -1/2 không thỏa mãn điều kiện x < -3 nên không phải nghiệm của (3).
Vậy phương trình có nghiệm x = 2.
d) |x – 4| + 3x = 5 (4)
+) Ta có: |x - 4| = x – 4 nếu hay x ≥ 4
| x- 4| = - (x – 4) = 4 - x nếu x - 4 < 0 hay x < 4
Vậy để giải phương trình (4) ta quy về giải hai phương trình
+) Phương trình: x - 4 + 3x = 5 với x ≥ 4
Ta có: x- 4 + 3x = 5 ⇔ 4x = 9 ⇔ ( không thỏa mãn điều kiện x ≥ 4 nên không là nghiệm của phương trình (4).
+) Phương trình: 4 – x + 3x = 5 với x < 4
Ta có: 4 – x + 3x = 5 ⇔ 4 + 2x = 5 ⇔ 2x = 1 ⇔ (thỏa mãn điều kiện x < 4).
Vậy phương trình có nghiệm .
Xem thêm Video Giải bài tập Toán lớp 8 hay và chi tiết khác:
- Ôn tập chương 4 (Câu hỏi - Bài tập)
- Bài 1: Định lí Ta-lét trong tam giác
- Bài 2: Định lí đảo và hệ quả của định lí Ta-lét - Luyện tập trang 63-64-65)
- Luyện tập trang 63-64-65)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán 8 hay, chi tiết của chúng tôi được các Thầy / Cô giáo biên soạn bám sát chương trình sách giáo khoa Toán 8 Tập 1, Tập 2 sách mới.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều