Giải bài tập Toán lớp 8 Bài 5: Phương trình chứa dấu giá trị tuyệt đối

Giải bài tập Toán lớp 8 Bài 5: Phương trình chứa dấu giá trị tuyệt đối

Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 50 - Video giải tại 3:03 : Rút gọn các biểu thức:

a) C = |-3x| + 7x – 4 khi x ≤ 0;

b) D = 5 – 4x + |x - 6| khi x < 6.

Lời giải

a) x ≤ 0 nên – 3x ≥ 0 ⇒ |-3x| = -3x

Vậy C = |-3x| + 7x – 4 = -3x + 7x - 4 = 4x - 4

b) x < 6 nên x – 6 < 0 ⇒ |x - 6| = -(x - 6) = 6 - x

Vậy D = 5 – 4x + |x - 6| = 5 – 4x + 6 – x = 11 – 5x

Trả lời câu hỏi Toán 8 Tập 2 Bài 5 trang 51 - Video giải tại 8:22 : Giải các phương trình:

a) |x + 5| = 3x + 1;

b) |-5x| = 2x + 21.

Lời giải

Video Giải bài tập Toán lớp 8 hay, chi tiết

a)

+) Ta có: | x+ 5| = x + 5 khi x+ 5 ≥ 0 hay x ≥ -5

               | x+ 5| = - (x + 5) khi x+ 5 < 0 hay x < - 5

Vậy để giải phương trình đã cho ta quy về giải hai phương trình:

+) Phương trình: x + 5 = 3x + 1 với điều kiện x ≥ -5

Ta có: x + 5 = 3x + 1

⇔ - 2x = - 4 ⇔ x = 2 (thỏa mãn điều kiện x ≥ -5)

+)Phương trình: - (x + 5) = 3x + 1 với điều kiện x < -5

Ta có: -x - 5 = 3x + 1 ⇔ - 4x = 6

⇔ x = Video Giải bài tập Toán lớp 8 hay, chi tiết (không thỏa mãn điều kiện x < -5)

Vậy tập nghiệm của bất phương trình |x + 5| = 3x + 1 là S = {2}

b)

+) Ta có: |- 5x| = - 5x khi -5x ≥ 0 hay x ≤ 0

               | - 5x| = 5x khi – 5x < 0 hay x > 0

Vậy để giải phương trình đã cho ta quy về giải hai phương trình:

+) Phương trình: - 5x = 2x + 21 với điều kiện x ≥ 0

⇔ - 7x = 21 ⇔ x = - 3 ( thỏa mãn điều kiện x ≤ 0 )

+) Phương trình: 5x = 2x + 21 với điều kiện x> 0

⇔ 3x = 21

⇔ x = 7 (thỏa mãn điều kiện x > 0)

Vậy tập nghiệm của bất phương trình |-5x|= 2x + 21 là S = {-3; 7}.

Bài 35 trang 51 SGK Toán 8 Tập 2 - Video giải tại 16:00) : Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức:

a) A = 3x + 2 + |5x| trong hai trường hợp: x ≥ 0 và x < 0;

b) B = |-4x| - 2x + 12 trong hai trường hợp: x ≤ 0 và x > 0;

c) C = |x - 4| - 2x + 12 khi x > 5;

d) D = 3x + 2 + |x + 5|.

Lời giải

a) - Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x

Vậy A = 3x + 2 + 5x = 8x + 2

- Khi x < 0 ta có 5x < 0 nên |5x| = -5x

Vậy A = 3x + 2 - 5x = -2x + 2

b) - Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x

Vậy B = -4x - 2x + 12 = -6x + 12

- Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x

Vậy B = 4x - 2x + 12 = 2x + 12

c) - Khi x > 5 ta có x - 4 > 1 (trừ hai vế cho 4) hay x - 4 > 0 nên |x - 4| = x - 4

Vậy C = x - 4 - 2x + 12 = -x + 8

d) Ta có: |x + 5| = x + 5 khi x + 5 ≥ 0 hay x ≥ -5.

|x + 5| = -(x + 5) khi x + 5 < 0 hay x < -5.

Vậy :

+ Với x ≥ -5 thì D = 3x + 2 + x + 5 = 4x + 7.

+ Với x < -5 thì D = 3x + 2 – (x + 5) = 3x + 2 – x – 5 = 2x – 3.

Bài 36 trang 51 SGK Toán 8 Tập 2 - Video giải tại 22:16) : Giải các phương trình:

a) |2x| = x - 6 ;     b) |-3x| = x - 8

c) |4x| = 2x + 12 ;     d) |-5x| - 16 = 3x

Lời giải:

a) |2x| = x – 6 (1)

Ta có: |2x| = 2x khi 2x ≥ 0 hay x ≥ 0

|2x| = -2x khi 2x < 0 hay x < 0.

Vậy phương trình (1) tương đương với:

+ 2x = x – 6 với điều kiện x ≥ 0

2x = x – 6 ⇔ x = -6

Giá trị x = -6 không thỏa mãn điều kiện x ≥ 0 nên không phải nghiệm của (1)

+ -2x = x – 6 với điều kiện x < 0

-2x = x – 6 ⇔ -3x = -6 ⇔ x = 2.

Giá trị x = 2 không thỏa mãn điều kiện x < 0 nên không phải nghiệm của (1).

Vậy phương trình (1) vô nghiệm.

b) |-3x| = x – 8 (2)

Ta có: |-3x| = -3x khi -3x ≥ 0 hay x ≤ 0.

|-3x| = -(-3x) = 3x khi -3x < 0 hay x > 0.

Vậy phương trình (2) tương đương với:

+ -3x = x – 8 với điều kiện x ≤ 0

-3x = x – 8 ⇔ -4x = -8 ⇔ x = 2

Giá trị x = 2 không thỏa mãn điều kiện x ≤ 0 nên không phải nghiệm của (2).

+ 3x = x – 8 với điều kiện x > 0

3x = x – 8 ⇔ 2x = -8 ⇔ x = -4.

Giá trị x = -4 không thỏa mãn điều kiện x > 0 nên không phải nghiệm của (2).

Vậy phương trình (2) vô nghiệm.

c) |4x| = 2x + 12 (3)

Ta có: |4x| = 4x khi 4x ≥ 0 ⇔ x ≥ 0

|4x| = -4x khi 4x < 0 hay x < 0.

Vậy phương trình (3) tương đương với:

+ 4x = 2x + 12 với điều kiện x ≥ 0

4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6.

Giá trị x = 6 thỏa mãn điều kiện x ≥ 0 nên là nghiệm của (3)

+ -4x = 2x + 12 với điều kiện x < 0

-4x = 2x + 12 ⇔ -6x = 12 ⇔ x = -2.

Giá trị x = -2 thỏa mãn điều kiện x < 0 nên là nghiệm của (3).

Vậy phương trình (3) có hai nghiệm x = 6 và x = -2.

d) |-5x| - 16 = 3x (4)

Ta có: |-5x| = -5x khi -5x ≥ 0 hay x ≤ 0.

|-5x| = -(-5x) = 5x khi -5x < 0 hay x > 0.

Vậy phương trình (4) tương đương với:

+ -5x – 16 = 3x với điều kiện x ≤ 0.

-5x – 16 = 3x ⇔ -5x – 3x = 16 ⇔ -8x = 16 ⇔ x = -2.

Giá trị x = -2 thỏa mãn điều kiện x ≤ 0 nên là nghiệm của (4).

+ 5x – 16 = 3x với điều kiện x > 0.

5x – 16 = 3x ⇔ 5x – 3x = 16 ⇔ 2x = 16 ⇔ x = 8

Giá trị x = 8 thỏa mãn điều kiện x > 0 nên là nghiệm của (4).

Vậy phương trình (4) có nghiệm x = -2 và x = 8.

Bài 37 trang 51 SGK Toán 8 Tập 2 - Video giải tại 35:21) : Giải các phương trình:

a) |x - 7| = 2x + 3 ;     b) |x + 4| = 2x - 5

c) |x+ 3| = 3x - 1 ;     d) |x - 4| + 3x = 5

Lời giải:

a) |x – 7| = 2x + 3 (1)

Ta có: |x – 7| = x – 7 khi x – 7 ≥ 0 hay x ≥ 7.

|x – 7| = -(x – 7) = 7 – x khi x – 7 < 0 hay x < 7.

Vậy phương trình (1) tương đương với:

+ x – 7 = 2x + 3 khi x ≥ 7

x – 7 = 2x + 3 ⇔ x = -10.

Giá trị x = -10 không thỏa mãn điều kiện x ≥ 7 nên không phải nghiệm của (1).

+ 7 – x = 2x + 3 khi x < 7.

7 – x = 2x + 3 ⇔ 3x = 4 ⇔ x = 4/3

Giá trị x = 4/3 thỏa mãn điều kiện x < 7 nên là nghiệm của (1)

Vậy phương trình (1) có nghiệm x = 4/3.

b) |x + 4| = 2x – 5 (2)

Ta có: |x + 4| = x + 4 khi x + 4 ≥ 0 hay x ≥ -4.

|x + 4| = -(x + 4) = -x – 4 khi x + 4 < 0 hay x < -4.

Vậy phương trình (1) tương đương với:

+ x + 4 = 2x – 5 khi x ≥ -4

x + 4 = 2x – 5 ⇔ x = 9

Giá trị x = 9 thỏa mãn điều kiện x ≥ -4 nên là nghiệm của (2).

+ -x – 4 = 2x – 5 khi x < -4.

– x – 4 = 2x – 5 ⇔ 3x = 1 ⇔ x = 1/3

Giá trị x = 1/3 không thỏa mãn điều kiện x < -4 nên không phải nghiệm của (2)

Vậy phương trình (2) có nghiệm x = 9.

c) |x + 3| = 3x – 1 (3)

Ta có : |x + 3| = x + 3 khi x + 3 ≥ 0 hay x ≥ -3.

|x + 3| = -(x + 3) = -x – 3 khi x + 3 < 0 hay x < -3.

Vậy phương trình (3) tương đương với:

+ x + 3 = 3x – 1 với điều kiện x ≥ -3

x + 3 = 3x – 1 ⇔ 2x = 4 ⇔ x = 2.

Giá trị x = 2 thỏa mãn điều kiện x ≥ -3 nên là nghiệm của phương trình (3).

+ -x – 3 = 3x – 1 với điều kiện x < -3

-x – 3 = 3x – 1 ⇔ 4x = -2 ⇔ x = -1/2.

Giá trị x = -1/2 không thỏa mãn điều kiện x < -3 nên không phải nghiệm của (3).

Vậy phương trình có nghiệm x = 2.

d) |x – 4| + 3x = 5 (4)

+) Ta có: |x - 4| = x – 4 nếu hay x ≥ 4

| x- 4| = - (x – 4) = 4 - x nếu x - 4 < 0 hay x < 4

Vậy để giải phương trình (4) ta quy về giải hai phương trình

+) Phương trình: x - 4 + 3x = 5 với x ≥ 4

Ta có: x- 4 + 3x = 5 ⇔ 4x = 9 ⇔ Giải bài 23 trang 47 SGK Toán 8 Tập 2 | Giải toán lớp 8 ( không thỏa mãn điều kiện x ≥ 4 nên không là nghiệm của phương trình (4).

+) Phương trình: 4 – x + 3x = 5 với x < 4

Ta có: 4 – x + 3x = 5 ⇔ 4 + 2x = 5 ⇔ 2x = 1 ⇔ Giải bài 23 trang 47 SGK Toán 8 Tập 2 | Giải toán lớp 8 (thỏa mãn điều kiện x < 4).

Vậy phương trình có nghiệm Giải bài 23 trang 47 SGK Toán 8 Tập 2 | Giải toán lớp 8 .

Xem thêm Video Giải bài tập Toán lớp 8 hay và chi tiết khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán 8 hay, chi tiết của chúng tôi được các Thầy / Cô giáo biên soạn bám sát chương trình sách giáo khoa Toán 8 Tập 1, Tập 2 sách mới.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 8 sách mới các môn học
Tài liệu giáo viên