Bài 3.53 trang 133 Sách bài tập Hình học 12



Câu hỏi và bài tập chương 3

Bài 3.53 trang 133 Sách bài tập Hình học 12: Cho hai mặt phẳng:

(P1): 2x + y + 2z + 1 = 0 và (P2): 4x – 2y – 4z + 7 = 0.

Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.

Lời giải:

Quảng cáo

Ta có: M(x, y, z) ∈ (P) ⇔ d(M, (P1)) = d(M, (P2))

Giải sách bài tập Toán 12 | Giải SBT Toán 12

⇔ 2|2x + y + 2z + 1| = |4x − 2y − 4z + 7|

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Từ đó suy ra phương trình mặt phẳng phải tìm là: 4y + 8z – 5 = 0 hoặc 8x + 9 = 0

Quảng cáo

Các bài giải sách bài tập Hình học 12 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


cau-hoi-va-bai-tap-chuong-3.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên