Bài 1.76 trang 40 Sách bài tập Giải tích 12



Bài tập ôn tập chương 1

Bài 1.76 trang 40 Sách bài tập Giải tích 12: Cho hàm số: y = –(m2 + 5m)x3 + 6mx2 + 6x – 5

a) Xác định m để hàm số đơn điệu trên R. Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?

b) Với giá trị nào của m thì hàm số đạt cực đại tại x = 1 ?

Lời giải:

Quảng cáo

a) y = –(m2 + 5m)x3 + 6mx2 + 6x – 5

y′ = –3(m2 + 5m)x2 + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +) m2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải SBT Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với m2 + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

Δ' = 36m2 + 18(m2 + 5m) ≤ 0 ⇔ 3m2 + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0

– Với điều kiện đó, ta có –3(m2 + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3m2 – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải SBT Toán 12

Mặt khác, y” = –6(m2 + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

Quảng cáo

Các bài giải sách bài tập Giải tích 12 khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official


bai-tap-on-tap-chuong-1.jsp


Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên