Giải bài 32 trang 68 SGK Hình học 11 nâng cao



Bài 4: Hai mặt phẳng song song

Bài 32 (trang 68 sgk Hình học 11 nâng cao): Cho hai đường thẳng chéo nhau a và b lần lượt nằm trên hai mặt phẳng song song (P) và (Q). Chứng minh rằng nếu điểm M không nằm trên (P) và không nằm trên (Q) thì duy nhất một đường thẳng đi qua M cắt cả a và b

Lời giải:

Quảng cáo
Giải Toán 11 nâng cao | Giải bài tập Toán lớp 11 nâng cao

Giả sử c = mp(M, a) ∩ mp(M, b). Ta cần chứng minh c cắt cả a và b. Vì c và a cùng nằm trên một mặt phẳng và không thể trùng nhau (do c qua M và a không đi qua M) nên hoặc c // a hoặc c cắt b. Cũng vậy hoặc c // b hoặc c cắt b. Không thể xảy ra đồng thời c // a, c // b vì a, b chéo nhau. Vậy nếu c song song với a thì c phải cắt b , tức là c qua một điểm của mp(Q), và do đó M thuộc (Q) (trái giả thiết). Tương tự, không thể có c song song với b. Tóm lại c phải cắt a và b

Nếu còn có đường thẳng c’ khác đi qua M, cắt cả a và b thì a và b đồng phẳng. Vô lí

Quảng cáo

Các bài giải bài tập Hình học 11 nâng cao Bài 4 Chương 2 khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


hai-mat-phang-song-song.jsp


Giải bài tập lớp 11 sách mới các môn học
Tài liệu giáo viên