Giải bài 2 trang 12 sgk Hình học 12
Bài 1: Khái niệm về khối đa diện
Bài 2 (trang 12 SGK Hình học 12): Chứng minh rằng một đa diện mà mỗi đỉnh của nó là đỉnh chung của một số lẻ mặt thì tổng số các đỉnh của nó phải là một số chẵn. Cho ví dụ.
Lời giải:
Cho khối đa diện (G) có các đỉnh là B1, B2,…, Bn và gọi m1, m2,…, mn lần lượt là số các mặt của (G) nhận chúng làm đỉnh chung, ở đó m1, m2,…, mn là những số lẻ.
Như vậy mỗi đỉnh Bk có mk cạnh đi qua.
Ta có: đỉnh B1 có m1 cạnh đi qua, đỉnh B2 có m2 cạnh đi qua, …, đỉnh Bn có mn cạnh đi qua.
Do đó tổng số các cạnh (có thể trùng nhau) của đa diện là m1 + m2 + … + mn.
Tuy nhiên, do mỗi cạnh là cạnh chung của đúng hai mặt nên số cạnh ở trên được đếm hai lần.
Vậy tổng số các cạnh thực tế của (G) là:
C = (m1 + m2 + … + mn)
Vì C là số nguyên dương nên:
m1 + m2 + … + mn là số chẵn.
Đồng thời m1, m2 , ..., mn là n số tự nhiên lẻ nên tổng của chúng là số chẵn khi n chẵn.
Ví dụ: Hình chóp ngũ giác B1.B2B3B4B5B6 có: B1 là đỉnh chung của 5 mặt bên. Mỗi đỉnh B1, B2, B3, B4, B5, B6 là đỉnh chung của ba mặt (hình dưới).
Tham khảo lời giải các bài tập Toán 12 Bài 1 Chương 1 khác:
Trả lời câu hỏi Toán 12 Hình học Bài 1 trang 4 : Nhắc lại định nghĩa hình lăng trụ ....
Trả lời câu hỏi Toán 12 Hình học Bài 1 trang 6 : Kể tên các mặt của hình lăng trụ ....
Trả lời câu hỏi Toán 12 Hình học Bài 1 trang 8 : Giải thích tại sao hình 1.8c ....
Trả lời câu hỏi Toán 12 Hình học Bài 1 trang 10 : Cho hình hộp ABCD.A’B’C’D’....
Bài 1 (trang 12 SGK Hình học 12): Chứng minh rằng một đa diện có các mặt là ...
Bài 2 (trang 12 SGK Hình học 12): Chứng minh rằng một đa diện mà mỗi đỉnh của nó là ...
Bài 3 (trang 12 SGK Hình học 12): Chia một khối lập phương thành năm khối tứ diện.
Bài 4 (trang 12 SGK Hình học 12): Chia khối lập phương thành sáu khối tứ diện bằng nhau.
Các bài giải Toán 12 Hình học Tập 1 Chương 1 khác:
- Bài 1: Khái niệm về khối đa diện
- Bài 2: Khối đa diện lồi và khối đa diện đều
- Bài 3: Khái niệm về thể tích của khối đa diện
- Ôn tập chương I
- Câu hỏi trắc nghiệm chương I
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều