Dựa vào đồ thị hàm số bậc hai y = f(x) trong mỗi Hình 18a, 18b, 18c, hãy viết tập nghiệm các bất phương trình

Giải sách bài tập Toán 10 Bài 4: Bất phương trình bậc hai một ẩn

Bài 30 trang 56 SBT Toán 10 Tập 1: Dựa vào đồ thị hàm số bậc hai y = f(x) trong mỗi Hình 18a, 18b, 18c, hãy viết tập nghiệm các bất phương trình sau: f(x) > 0; f(x) < 0; f(x) ≥ 0 và f(x) ≤ 0.

Dựa vào đồ thị hàm số bậc hai y = f(x) trong mỗi Hình 18a, 18b, 18c, hãy viết tập nghiệm các bất phương trình

Quảng cáo

Lời giải:

+) Hình 18a):

Quan sát đồ thị hàm số, ta thấy:

Đồ thị hàm số nằm hoàn toàn phía dưới trục hoành với mọi x ∈ ℝ.

Do đó:

f(x) < 0 và f(x) ≤ 0 luôn đúng với mọi x ∈ ℝ.

f(x) > 0; f(x) ≥ 0 và vô nghiệm.

Vậy tập nghiệm của các bất phương trình f(x) > 0 và f(x) ≥ 0 là , tập nghiệm của bất phương trình f(x) < 0 và f(x) ≤ 0 là ℝ.

+) Hình 18b):

Quan sát đồ thị hàm số, ta thấy:

Với x ∈ (1; 3) hàm số nằm trên trục hoành hay f(x) > 0.

Với x < 1 hoặc x > 3 đồ thị hàm số nằm phía dưới trục hoành hay f(x) < 0.

Đồ thị hàm số cắt trục hoành tại x = 1 hoặc x = 3.

Do đó:

f(x) > 0 khi x ∈ (1; 3).

f(x) < 0 khi x ∈ (– ∞; 1) ∪ (3; +∞).

f(x) ≥ 0 khi x ∈ [1; 3].

f(x) ≤ 0 khi x ∈ (– ∞; 1] ∪ [3; +∞).

Vậy tập nghiệm của các bất phương trình f(x) > 0; f(x) < 0; f(x) ≥ 0; f(x) ≤ 0 lần lượt là (1; 3); (– ∞; 1) ∪ (3; +∞); [1; 3]; (– ∞; 1] ∪ [3; +∞).

+) Hình 18c):

Quan sát đồ thị hàm số, ta thấy:

Đồ thị hàm số cắt trục hoành tại x = 2.

Với x ≠ 2 hàm số nằm dưới trục hoành hay f(x) < 0.

Do đó:

f(x) > 0 vô nghiệm.

f(x) < 0 khi x ∈ ℝ \ {2}.

f(x) ≥ 0 khi x = 2.

f(x) ≤ 0 khi x ∈ ℝ.

Vậy tập nghiệm của các bất phương trình f(x) > 0; f(x) < 0; f(x) ≥ 0; f(x) ≤ 0 lần lượt là ; ℝ \ {2}; {2}; ℝ.

Quảng cáo


Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

Săn shopee siêu SALE :

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Cánh diều khác
Tài liệu giáo viên